Approximation Theory Using Positive Linear Operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2004
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This work treats quantitative aspects of the approximation of functions using positive linear operators. The theory of these operators has been an important area of research in the last few decades, particularly as it affects computer-aided geometric design. In this book, the crucial role of the second order moduli of continuity in the study of such operators is emphasized. New and efficient methods, applicable to general operators and to diverse concrete moduli, are presented. The advantages of these methods consist in obtaining improved and even optimal estimates, as well as in broadening the applicability of the results. Additional Topics and Features: * Examination of the multivariate approximation case * Special focus on the Bernstein operators, including applications, and on two new classes of Bernstein-type operators * Many general estimates, leaving room for future applications (e.g. the B-spline case) * Extensions to approximation operators acting on spaces of vector functions * Historical perspective in the form of previous significant results This monograph will be of interest to those working in the field of approximation or functional analysis. Requiring only familiarity with the basics of approximation theory, the book may serve as a good supplementary text for courses in approximation theory, or as a reference text on the subject |
Beschreibung: | 1 Online-Ressource (X, 202p) |
ISBN: | 9781461220589 9780817643508 |
DOI: | 10.1007/978-1-4612-2058-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419973 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781461220589 |c Online |9 978-1-4612-2058-9 | ||
020 | |a 9780817643508 |c Print |9 978-0-8176-4350-8 | ||
024 | 7 | |a 10.1007/978-1-4612-2058-9 |2 doi | |
035 | |a (OCoLC)863721057 | ||
035 | |a (DE-599)BVBBV042419973 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.4 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Păltănea, Radu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Approximation Theory Using Positive Linear Operators |c by Radu Păltănea |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2004 | |
300 | |a 1 Online-Ressource (X, 202p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This work treats quantitative aspects of the approximation of functions using positive linear operators. The theory of these operators has been an important area of research in the last few decades, particularly as it affects computer-aided geometric design. In this book, the crucial role of the second order moduli of continuity in the study of such operators is emphasized. New and efficient methods, applicable to general operators and to diverse concrete moduli, are presented. The advantages of these methods consist in obtaining improved and even optimal estimates, as well as in broadening the applicability of the results. Additional Topics and Features: * Examination of the multivariate approximation case * Special focus on the Bernstein operators, including applications, and on two new classes of Bernstein-type operators * Many general estimates, leaving room for future applications (e.g. the B-spline case) * Extensions to approximation operators acting on spaces of vector functions * Historical perspective in the form of previous significant results This monograph will be of interest to those working in the field of approximation or functional analysis. Requiring only familiarity with the basics of approximation theory, the book may serve as a good supplementary text for courses in approximation theory, or as a reference text on the subject | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Field theory (Physics) | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Integral Transforms | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Approximations and Expansions | |
650 | 4 | |a Field Theory and Polynomials | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Integral Transforms, Operational Calculus | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Lineare Operatorgleichung |0 (DE-588)4123658-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Approximationstheorie |0 (DE-588)4120913-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Approximationstheorie |0 (DE-588)4120913-8 |D s |
689 | 0 | 1 | |a Lineare Operatorgleichung |0 (DE-588)4123658-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2058-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855390 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091281387520 |
---|---|
any_adam_object | |
author | Păltănea, Radu |
author_facet | Păltănea, Radu |
author_role | aut |
author_sort | Păltănea, Radu |
author_variant | r p rp |
building | Verbundindex |
bvnumber | BV042419973 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863721057 (DE-599)BVBBV042419973 |
dewey-full | 511.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.4 |
dewey-search | 511.4 |
dewey-sort | 3511.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2058-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03321nmm a2200565zc 4500</leader><controlfield tag="001">BV042419973</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461220589</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2058-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817643508</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-8176-4350-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2058-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863721057</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419973</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Păltănea, Radu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximation Theory Using Positive Linear Operators</subfield><subfield code="c">by Radu Păltănea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 202p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This work treats quantitative aspects of the approximation of functions using positive linear operators. The theory of these operators has been an important area of research in the last few decades, particularly as it affects computer-aided geometric design. In this book, the crucial role of the second order moduli of continuity in the study of such operators is emphasized. New and efficient methods, applicable to general operators and to diverse concrete moduli, are presented. The advantages of these methods consist in obtaining improved and even optimal estimates, as well as in broadening the applicability of the results. Additional Topics and Features: * Examination of the multivariate approximation case * Special focus on the Bernstein operators, including applications, and on two new classes of Bernstein-type operators * Many general estimates, leaving room for future applications (e.g. the B-spline case) * Extensions to approximation operators acting on spaces of vector functions * Historical perspective in the form of previous significant results This monograph will be of interest to those working in the field of approximation or functional analysis. Requiring only familiarity with the basics of approximation theory, the book may serve as a good supplementary text for courses in approximation theory, or as a reference text on the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory and Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms, Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Operatorgleichung</subfield><subfield code="0">(DE-588)4123658-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Approximationstheorie</subfield><subfield code="0">(DE-588)4120913-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lineare Operatorgleichung</subfield><subfield code="0">(DE-588)4123658-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2058-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855390</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419973 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461220589 9780817643508 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855390 |
oclc_num | 863721057 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 202p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Păltănea, Radu Verfasser aut Approximation Theory Using Positive Linear Operators by Radu Păltănea Boston, MA Birkhäuser Boston 2004 1 Online-Ressource (X, 202p) txt rdacontent c rdamedia cr rdacarrier This work treats quantitative aspects of the approximation of functions using positive linear operators. The theory of these operators has been an important area of research in the last few decades, particularly as it affects computer-aided geometric design. In this book, the crucial role of the second order moduli of continuity in the study of such operators is emphasized. New and efficient methods, applicable to general operators and to diverse concrete moduli, are presented. The advantages of these methods consist in obtaining improved and even optimal estimates, as well as in broadening the applicability of the results. Additional Topics and Features: * Examination of the multivariate approximation case * Special focus on the Bernstein operators, including applications, and on two new classes of Bernstein-type operators * Many general estimates, leaving room for future applications (e.g. the B-spline case) * Extensions to approximation operators acting on spaces of vector functions * Historical perspective in the form of previous significant results This monograph will be of interest to those working in the field of approximation or functional analysis. Requiring only familiarity with the basics of approximation theory, the book may serve as a good supplementary text for courses in approximation theory, or as a reference text on the subject Mathematics Field theory (Physics) Functional analysis Integral Transforms Operator theory Approximations and Expansions Field Theory and Polynomials Functional Analysis Integral Transforms, Operational Calculus Operator Theory Applications of Mathematics Mathematik Lineare Operatorgleichung (DE-588)4123658-0 gnd rswk-swf Approximationstheorie (DE-588)4120913-8 gnd rswk-swf Approximationstheorie (DE-588)4120913-8 s Lineare Operatorgleichung (DE-588)4123658-0 s 1\p DE-604 https://doi.org/10.1007/978-1-4612-2058-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Păltănea, Radu Approximation Theory Using Positive Linear Operators Mathematics Field theory (Physics) Functional analysis Integral Transforms Operator theory Approximations and Expansions Field Theory and Polynomials Functional Analysis Integral Transforms, Operational Calculus Operator Theory Applications of Mathematics Mathematik Lineare Operatorgleichung (DE-588)4123658-0 gnd Approximationstheorie (DE-588)4120913-8 gnd |
subject_GND | (DE-588)4123658-0 (DE-588)4120913-8 |
title | Approximation Theory Using Positive Linear Operators |
title_auth | Approximation Theory Using Positive Linear Operators |
title_exact_search | Approximation Theory Using Positive Linear Operators |
title_full | Approximation Theory Using Positive Linear Operators by Radu Păltănea |
title_fullStr | Approximation Theory Using Positive Linear Operators by Radu Păltănea |
title_full_unstemmed | Approximation Theory Using Positive Linear Operators by Radu Păltănea |
title_short | Approximation Theory Using Positive Linear Operators |
title_sort | approximation theory using positive linear operators |
topic | Mathematics Field theory (Physics) Functional analysis Integral Transforms Operator theory Approximations and Expansions Field Theory and Polynomials Functional Analysis Integral Transforms, Operational Calculus Operator Theory Applications of Mathematics Mathematik Lineare Operatorgleichung (DE-588)4123658-0 gnd Approximationstheorie (DE-588)4120913-8 gnd |
topic_facet | Mathematics Field theory (Physics) Functional analysis Integral Transforms Operator theory Approximations and Expansions Field Theory and Polynomials Functional Analysis Integral Transforms, Operational Calculus Operator Theory Applications of Mathematics Mathematik Lineare Operatorgleichung Approximationstheorie |
url | https://doi.org/10.1007/978-1-4612-2058-9 |
work_keys_str_mv | AT paltanearadu approximationtheoryusingpositivelinearoperators |