A Stability Technique for Evolution Partial Differential Equations: A Dynamical Systems Approach
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Galaktionov, Victor A. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Boston, MA Birkhäuser Boston 2004
Schriftenreihe:Progress in Nonlinear Differential Equations and Their Applications 56
Schlagworte:
Online-Zugang:Volltext
Beschreibung:common feature is that these evolution problems can be formulated as asymptotically small perturbations of certain dynamical systems with better-known behaviour. Now, it usually happens that the perturbation is small in a very weak sense, hence the difficulty (or impossibility) of applying more classical techniques. Though the method originated with the analysis of critical behaviour for evolution PDEs, in its abstract formulation it deals with a nonautonomous abstract differential equation (NDE) (1) Ut = A(u) + C(u, t), t > 0, where u has values in a Banach space, like an LP space, A is an autonomous (time-independent) operator and C is an asymptotically small perturbation, so that C(u(t), t) ~ ° as t ~ 00 along orbits {u(t)} of the evolution in a sense to be made precise, which in practice can be quite weak. We work in a situation in which the autonomous (limit) differential equation (ADE) Ut = A(u) (2) has a well-known asymptotic behaviour, and we want to prove that for large times the orbits of the original evolution problem converge to a certain class of limits of the autonomous equation. More precisely, we want to prove that the orbits of (NDE) are attracted by a certain limit set [2* of (ADE), which may consist of equilibria of the autonomous equation, or it can be a more complicated object
Beschreibung:1 Online-Ressource (XIX, 377p. 10 illus)
ISBN:9781461220503
9781461273967
DOI:10.1007/978-1-4612-2050-3

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen