A Stability Technique for Evolution Partial Differential Equations: A Dynamical Systems Approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2004
|
Schriftenreihe: | Progress in Nonlinear Differential Equations and Their Applications
56 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | common feature is that these evolution problems can be formulated as asymptotically small perturbations of certain dynamical systems with better-known behaviour. Now, it usually happens that the perturbation is small in a very weak sense, hence the difficulty (or impossibility) of applying more classical techniques. Though the method originated with the analysis of critical behaviour for evolution PDEs, in its abstract formulation it deals with a nonautonomous abstract differential equation (NDE) (1) Ut = A(u) + C(u, t), t > 0, where u has values in a Banach space, like an LP space, A is an autonomous (time-independent) operator and C is an asymptotically small perturbation, so that C(u(t), t) ~ ° as t ~ 00 along orbits {u(t)} of the evolution in a sense to be made precise, which in practice can be quite weak. We work in a situation in which the autonomous (limit) differential equation (ADE) Ut = A(u) (2) has a well-known asymptotic behaviour, and we want to prove that for large times the orbits of the original evolution problem converge to a certain class of limits of the autonomous equation. More precisely, we want to prove that the orbits of (NDE) are attracted by a certain limit set [2* of (ADE), which may consist of equilibria of the autonomous equation, or it can be a more complicated object |
Beschreibung: | 1 Online-Ressource (XIX, 377p. 10 illus) |
ISBN: | 9781461220503 9781461273967 |
DOI: | 10.1007/978-1-4612-2050-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419971 | ||
003 | DE-604 | ||
005 | 20210526 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781461220503 |c Online |9 978-1-4612-2050-3 | ||
020 | |a 9781461273967 |c Print |9 978-1-4612-7396-7 | ||
024 | 7 | |a 10.1007/978-1-4612-2050-3 |2 doi | |
035 | |a (OCoLC)863757448 | ||
035 | |a (DE-599)BVBBV042419971 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Galaktionov, Victor A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Stability Technique for Evolution Partial Differential Equations |b A Dynamical Systems Approach |c by Victor A. Galaktionov, Juan Luis Vázquez |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2004 | |
300 | |a 1 Online-Ressource (XIX, 377p. 10 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Nonlinear Differential Equations and Their Applications |v 56 | |
500 | |a common feature is that these evolution problems can be formulated as asymptotically small perturbations of certain dynamical systems with better-known behaviour. Now, it usually happens that the perturbation is small in a very weak sense, hence the difficulty (or impossibility) of applying more classical techniques. Though the method originated with the analysis of critical behaviour for evolution PDEs, in its abstract formulation it deals with a nonautonomous abstract differential equation (NDE) (1) Ut = A(u) + C(u, t), t > 0, where u has values in a Banach space, like an LP space, A is an autonomous (time-independent) operator and C is an asymptotically small perturbation, so that C(u(t), t) ~ ° as t ~ 00 along orbits {u(t)} of the evolution in a sense to be made precise, which in practice can be quite weak. We work in a situation in which the autonomous (limit) differential equation (ADE) Ut = A(u) (2) has a well-known asymptotic behaviour, and we want to prove that for large times the orbits of the original evolution problem converge to a certain class of limits of the autonomous equation. More precisely, we want to prove that the orbits of (NDE) are attracted by a certain limit set [2* of (ADE), which may consist of equilibria of the autonomous equation, or it can be a more complicated object | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Materials | |
650 | 4 | |a Hydraulic engineering | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Analysis | |
650 | 4 | |a Continuum Mechanics and Mechanics of Materials | |
650 | 4 | |a Engineering Fluid Dynamics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dynamisches System |0 (DE-588)4013396-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |D s |
689 | 0 | 2 | |a Dynamisches System |0 (DE-588)4013396-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Vázquez, Juan Luis |e Sonstige |4 oth | |
830 | 0 | |a Progress in Nonlinear Differential Equations and Their Applications |v 56 |w (DE-604)BV036582883 |9 56 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2050-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855388 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091276144640 |
---|---|
any_adam_object | |
author | Galaktionov, Victor A. |
author_facet | Galaktionov, Victor A. |
author_role | aut |
author_sort | Galaktionov, Victor A. |
author_variant | v a g va vag |
building | Verbundindex |
bvnumber | BV042419971 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863757448 (DE-599)BVBBV042419971 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2050-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03686nmm a2200601zcb4500</leader><controlfield tag="001">BV042419971</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210526 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461220503</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2050-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461273967</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7396-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2050-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863757448</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419971</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Galaktionov, Victor A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Stability Technique for Evolution Partial Differential Equations</subfield><subfield code="b">A Dynamical Systems Approach</subfield><subfield code="c">by Victor A. Galaktionov, Juan Luis Vázquez</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIX, 377p. 10 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">56</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">common feature is that these evolution problems can be formulated as asymptotically small perturbations of certain dynamical systems with better-known behaviour. Now, it usually happens that the perturbation is small in a very weak sense, hence the difficulty (or impossibility) of applying more classical techniques. Though the method originated with the analysis of critical behaviour for evolution PDEs, in its abstract formulation it deals with a nonautonomous abstract differential equation (NDE) (1) Ut = A(u) + C(u, t), t > 0, where u has values in a Banach space, like an LP space, A is an autonomous (time-independent) operator and C is an asymptotically small perturbation, so that C(u(t), t) ~ ° as t ~ 00 along orbits {u(t)} of the evolution in a sense to be made precise, which in practice can be quite weak. We work in a situation in which the autonomous (limit) differential equation (ADE) Ut = A(u) (2) has a well-known asymptotic behaviour, and we want to prove that for large times the orbits of the original evolution problem converge to a certain class of limits of the autonomous equation. More precisely, we want to prove that the orbits of (NDE) are attracted by a certain limit set [2* of (ADE), which may consist of equilibria of the autonomous equation, or it can be a more complicated object</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continuum Mechanics and Mechanics of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering Fluid Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dynamisches System</subfield><subfield code="0">(DE-588)4013396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vázquez, Juan Luis</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">56</subfield><subfield code="w">(DE-604)BV036582883</subfield><subfield code="9">56</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2050-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855388</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419971 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461220503 9781461273967 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855388 |
oclc_num | 863757448 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIX, 377p. 10 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Nonlinear Differential Equations and Their Applications |
series2 | Progress in Nonlinear Differential Equations and Their Applications |
spelling | Galaktionov, Victor A. Verfasser aut A Stability Technique for Evolution Partial Differential Equations A Dynamical Systems Approach by Victor A. Galaktionov, Juan Luis Vázquez Boston, MA Birkhäuser Boston 2004 1 Online-Ressource (XIX, 377p. 10 illus) txt rdacontent c rdamedia cr rdacarrier Progress in Nonlinear Differential Equations and Their Applications 56 common feature is that these evolution problems can be formulated as asymptotically small perturbations of certain dynamical systems with better-known behaviour. Now, it usually happens that the perturbation is small in a very weak sense, hence the difficulty (or impossibility) of applying more classical techniques. Though the method originated with the analysis of critical behaviour for evolution PDEs, in its abstract formulation it deals with a nonautonomous abstract differential equation (NDE) (1) Ut = A(u) + C(u, t), t > 0, where u has values in a Banach space, like an LP space, A is an autonomous (time-independent) operator and C is an asymptotically small perturbation, so that C(u(t), t) ~ ° as t ~ 00 along orbits {u(t)} of the evolution in a sense to be made precise, which in practice can be quite weak. We work in a situation in which the autonomous (limit) differential equation (ADE) Ut = A(u) (2) has a well-known asymptotic behaviour, and we want to prove that for large times the orbits of the original evolution problem converge to a certain class of limits of the autonomous equation. More precisely, we want to prove that the orbits of (NDE) are attracted by a certain limit set [2* of (ADE), which may consist of equilibria of the autonomous equation, or it can be a more complicated object Mathematics Global analysis (Mathematics) Differential equations, partial Materials Hydraulic engineering Partial Differential Equations Analysis Continuum Mechanics and Mechanics of Materials Engineering Fluid Dynamics Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Evolutionsgleichung (DE-588)4129061-6 gnd rswk-swf Dynamisches System (DE-588)4013396-5 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Evolutionsgleichung (DE-588)4129061-6 s Dynamisches System (DE-588)4013396-5 s 1\p DE-604 Vázquez, Juan Luis Sonstige oth Progress in Nonlinear Differential Equations and Their Applications 56 (DE-604)BV036582883 56 https://doi.org/10.1007/978-1-4612-2050-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Galaktionov, Victor A. A Stability Technique for Evolution Partial Differential Equations A Dynamical Systems Approach Progress in Nonlinear Differential Equations and Their Applications Mathematics Global analysis (Mathematics) Differential equations, partial Materials Hydraulic engineering Partial Differential Equations Analysis Continuum Mechanics and Mechanics of Materials Engineering Fluid Dynamics Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd Evolutionsgleichung (DE-588)4129061-6 gnd Dynamisches System (DE-588)4013396-5 gnd |
subject_GND | (DE-588)4044779-0 (DE-588)4129061-6 (DE-588)4013396-5 |
title | A Stability Technique for Evolution Partial Differential Equations A Dynamical Systems Approach |
title_auth | A Stability Technique for Evolution Partial Differential Equations A Dynamical Systems Approach |
title_exact_search | A Stability Technique for Evolution Partial Differential Equations A Dynamical Systems Approach |
title_full | A Stability Technique for Evolution Partial Differential Equations A Dynamical Systems Approach by Victor A. Galaktionov, Juan Luis Vázquez |
title_fullStr | A Stability Technique for Evolution Partial Differential Equations A Dynamical Systems Approach by Victor A. Galaktionov, Juan Luis Vázquez |
title_full_unstemmed | A Stability Technique for Evolution Partial Differential Equations A Dynamical Systems Approach by Victor A. Galaktionov, Juan Luis Vázquez |
title_short | A Stability Technique for Evolution Partial Differential Equations |
title_sort | a stability technique for evolution partial differential equations a dynamical systems approach |
title_sub | A Dynamical Systems Approach |
topic | Mathematics Global analysis (Mathematics) Differential equations, partial Materials Hydraulic engineering Partial Differential Equations Analysis Continuum Mechanics and Mechanics of Materials Engineering Fluid Dynamics Mathematik Partielle Differentialgleichung (DE-588)4044779-0 gnd Evolutionsgleichung (DE-588)4129061-6 gnd Dynamisches System (DE-588)4013396-5 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Differential equations, partial Materials Hydraulic engineering Partial Differential Equations Analysis Continuum Mechanics and Mechanics of Materials Engineering Fluid Dynamics Mathematik Partielle Differentialgleichung Evolutionsgleichung Dynamisches System |
url | https://doi.org/10.1007/978-1-4612-2050-3 |
volume_link | (DE-604)BV036582883 |
work_keys_str_mv | AT galaktionovvictora astabilitytechniqueforevolutionpartialdifferentialequationsadynamicalsystemsapproach AT vazquezjuanluis astabilitytechniqueforevolutionpartialdifferentialequationsadynamicalsystemsapproach |