Locally Conformal Kähler Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1998
|
Schriftenreihe: | Progress in Mathematics
155 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | . E C, 0 < 1>'1 < 1, and n E Z, n ~ 2. Let~.>. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf |
Beschreibung: | 1 Online-Ressource (XIII, 330 p) |
ISBN: | 9781461220268 9781461273875 |
DOI: | 10.1007/978-1-4612-2026-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419963 | ||
003 | DE-604 | ||
005 | 20160929 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781461220268 |c Online |9 978-1-4612-2026-8 | ||
020 | |a 9781461273875 |c Print |9 978-1-4612-7387-5 | ||
024 | 7 | |a 10.1007/978-1-4612-2026-8 |2 doi | |
035 | |a (OCoLC)869872136 | ||
035 | |a (DE-599)BVBBV042419963 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Dragomir, Sorin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Locally Conformal Kähler Geometry |c by Sorin Dragomir, Liviu Ornea |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1998 | |
300 | |a 1 Online-Ressource (XIII, 330 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 155 | |
500 | |a . E C, 0 < 1>'1 < 1, and n E Z, n ~ 2. Let~.>. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kähler-Mannigfaltigkeit |0 (DE-588)4162978-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kähler-Mannigfaltigkeit |0 (DE-588)4162978-4 |D s |
689 | 0 | 1 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Ornea, Liviu |d 1960- |e Sonstige |0 (DE-588)1112234004 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2026-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855380 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091260416000 |
---|---|
any_adam_object | |
author | Dragomir, Sorin |
author_GND | (DE-588)1112234004 |
author_facet | Dragomir, Sorin |
author_role | aut |
author_sort | Dragomir, Sorin |
author_variant | s d sd |
building | Verbundindex |
bvnumber | BV042419963 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869872136 (DE-599)BVBBV042419963 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2026-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01913nmm a2200505zcb4500</leader><controlfield tag="001">BV042419963</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160929 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461220268</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2026-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461273875</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7387-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2026-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869872136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419963</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dragomir, Sorin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Locally Conformal Kähler Geometry</subfield><subfield code="c">by Sorin Dragomir, Liviu Ornea</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 330 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">155</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">. E C, 0 < 1>'1 < 1, and n E Z, n ~ 2. Let~.>. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kähler-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4162978-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kähler-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4162978-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ornea, Liviu</subfield><subfield code="d">1960-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1112234004</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2026-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855380</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419963 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461220268 9781461273875 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855380 |
oclc_num | 869872136 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 330 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Dragomir, Sorin Verfasser aut Locally Conformal Kähler Geometry by Sorin Dragomir, Liviu Ornea Boston, MA Birkhäuser Boston 1998 1 Online-Ressource (XIII, 330 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 155 . E C, 0 < 1>'1 < 1, and n E Z, n ~ 2. Let~.>. be the O-dimensional Lie n group generated by the transformation z ~ >.z, z E C - {a}. Then (cf Mathematics Geometry Global differential geometry Differential Geometry Mathematik Kähler-Mannigfaltigkeit (DE-588)4162978-4 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Kähler-Mannigfaltigkeit (DE-588)4162978-4 s Differentialgeometrie (DE-588)4012248-7 s 1\p DE-604 Ornea, Liviu 1960- Sonstige (DE-588)1112234004 oth https://doi.org/10.1007/978-1-4612-2026-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dragomir, Sorin Locally Conformal Kähler Geometry Mathematics Geometry Global differential geometry Differential Geometry Mathematik Kähler-Mannigfaltigkeit (DE-588)4162978-4 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
subject_GND | (DE-588)4162978-4 (DE-588)4012248-7 |
title | Locally Conformal Kähler Geometry |
title_auth | Locally Conformal Kähler Geometry |
title_exact_search | Locally Conformal Kähler Geometry |
title_full | Locally Conformal Kähler Geometry by Sorin Dragomir, Liviu Ornea |
title_fullStr | Locally Conformal Kähler Geometry by Sorin Dragomir, Liviu Ornea |
title_full_unstemmed | Locally Conformal Kähler Geometry by Sorin Dragomir, Liviu Ornea |
title_short | Locally Conformal Kähler Geometry |
title_sort | locally conformal kahler geometry |
topic | Mathematics Geometry Global differential geometry Differential Geometry Mathematik Kähler-Mannigfaltigkeit (DE-588)4162978-4 gnd Differentialgeometrie (DE-588)4012248-7 gnd |
topic_facet | Mathematics Geometry Global differential geometry Differential Geometry Mathematik Kähler-Mannigfaltigkeit Differentialgeometrie |
url | https://doi.org/10.1007/978-1-4612-2026-8 |
work_keys_str_mv | AT dragomirsorin locallyconformalkahlergeometry AT ornealiviu locallyconformalkahlergeometry |