Gabor Analysis and Algorithms: Theory and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1998
|
Schriftenreihe: | Applied and Numerical Harmonic Analysis
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In his paper Theory of Communication [Gab46], D. Gabor proposed the use of a family of functions obtained from one Gaussian by time-and frequency shifts. Each of these is well concentrated in time and frequency; together they are meant to constitute a complete collection of building blocks into which more complicated time-depending functions can be decomposed. The application to communication proposed by Gabor was to send the coeffi cients of the decomposition into this family of a signal, rather than the signal itself. This remained a proposal-as far as I know there were no seri ous attempts to implement it for communication purposes in practice, and in fact, at the critical time-frequency density proposed originally, there is a mathematical obstruction; as was understood later, the family of shifted and modulated Gaussians spans the space of square integrable functions [BBGK71, Per71] (it even has one function to spare [BGZ75] . . . ) but it does not constitute what we now call a frame, leading to numerical insta bilities. The Balian-Low theorem (about which the reader can find more in some of the contributions in this book) and its extensions showed that a similar mishap occurs if the Gaussian is replaced by any other function that is "reasonably" smooth and localized. One is thus led naturally to considering a higher time-frequency density |
Beschreibung: | 1 Online-Ressource (XVI, 496 p) |
ISBN: | 9781461220169 9781461273820 |
DOI: | 10.1007/978-1-4612-2016-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419959 | ||
003 | DE-604 | ||
005 | 20180720 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781461220169 |c Online |9 978-1-4612-2016-9 | ||
020 | |a 9781461273820 |c Print |9 978-1-4612-7382-0 | ||
024 | 7 | |a 10.1007/978-1-4612-2016-9 |2 doi | |
035 | |a (OCoLC)1165580347 | ||
035 | |a (DE-599)BVBBV042419959 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Feichtinger, Hans G. |d 1951- |e Verfasser |0 (DE-588)11810442X |4 aut | |
245 | 1 | 0 | |a Gabor Analysis and Algorithms |b Theory and Applications |c edited by Hans G. Feichtinger, Thomas Strohmer |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1998 | |
300 | |a 1 Online-Ressource (XVI, 496 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied and Numerical Harmonic Analysis | |
500 | |a In his paper Theory of Communication [Gab46], D. Gabor proposed the use of a family of functions obtained from one Gaussian by time-and frequency shifts. Each of these is well concentrated in time and frequency; together they are meant to constitute a complete collection of building blocks into which more complicated time-depending functions can be decomposed. The application to communication proposed by Gabor was to send the coeffi cients of the decomposition into this family of a signal, rather than the signal itself. This remained a proposal-as far as I know there were no seri ous attempts to implement it for communication purposes in practice, and in fact, at the critical time-frequency density proposed originally, there is a mathematical obstruction; as was understood later, the family of shifted and modulated Gaussians spans the space of square integrable functions [BBGK71, Per71] (it even has one function to spare [BGZ75] . . . ) but it does not constitute what we now call a frame, leading to numerical insta bilities. The Balian-Low theorem (about which the reader can find more in some of the contributions in this book) and its extensions showed that a similar mishap occurs if the Gaussian is replaced by any other function that is "reasonably" smooth and localized. One is thus led naturally to considering a higher time-frequency density | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Signal, Image and Speech Processing | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Gabor-Transformation |0 (DE-588)4410111-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildverarbeitung |0 (DE-588)4006684-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Digitale Signalverarbeitung |0 (DE-588)4113314-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bildverarbeitung |0 (DE-588)4006684-8 |D s |
689 | 0 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Digitale Signalverarbeitung |0 (DE-588)4113314-6 |D s |
689 | 1 | 1 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Gabor-Transformation |0 (DE-588)4410111-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Strohmer, Thomas |e Sonstige |0 (DE-588)1147161585 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-2016-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855376 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091234201600 |
---|---|
any_adam_object | |
author | Feichtinger, Hans G. 1951- |
author_GND | (DE-588)11810442X (DE-588)1147161585 |
author_facet | Feichtinger, Hans G. 1951- |
author_role | aut |
author_sort | Feichtinger, Hans G. 1951- |
author_variant | h g f hg hgf |
building | Verbundindex |
bvnumber | BV042419959 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165580347 (DE-599)BVBBV042419959 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-2016-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03932nmm a2200649zc 4500</leader><controlfield tag="001">BV042419959</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180720 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461220169</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-2016-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461273820</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7382-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-2016-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165580347</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419959</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feichtinger, Hans G.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11810442X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gabor Analysis and Algorithms</subfield><subfield code="b">Theory and Applications</subfield><subfield code="c">edited by Hans G. Feichtinger, Thomas Strohmer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 496 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied and Numerical Harmonic Analysis</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In his paper Theory of Communication [Gab46], D. Gabor proposed the use of a family of functions obtained from one Gaussian by time-and frequency shifts. Each of these is well concentrated in time and frequency; together they are meant to constitute a complete collection of building blocks into which more complicated time-depending functions can be decomposed. The application to communication proposed by Gabor was to send the coeffi cients of the decomposition into this family of a signal, rather than the signal itself. This remained a proposal-as far as I know there were no seri ous attempts to implement it for communication purposes in practice, and in fact, at the critical time-frequency density proposed originally, there is a mathematical obstruction; as was understood later, the family of shifted and modulated Gaussians spans the space of square integrable functions [BBGK71, Per71] (it even has one function to spare [BGZ75] . . . ) but it does not constitute what we now call a frame, leading to numerical insta bilities. The Balian-Low theorem (about which the reader can find more in some of the contributions in this book) and its extensions showed that a similar mishap occurs if the Gaussian is replaced by any other function that is "reasonably" smooth and localized. One is thus led naturally to considering a higher time-frequency density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal, Image and Speech Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gabor-Transformation</subfield><subfield code="0">(DE-588)4410111-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digitale Signalverarbeitung</subfield><subfield code="0">(DE-588)4113314-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Digitale Signalverarbeitung</subfield><subfield code="0">(DE-588)4113314-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Gabor-Transformation</subfield><subfield code="0">(DE-588)4410111-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Strohmer, Thomas</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1147161585</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-2016-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855376</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419959 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461220169 9781461273820 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855376 |
oclc_num | 1165580347 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 496 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Applied and Numerical Harmonic Analysis |
spelling | Feichtinger, Hans G. 1951- Verfasser (DE-588)11810442X aut Gabor Analysis and Algorithms Theory and Applications edited by Hans G. Feichtinger, Thomas Strohmer Boston, MA Birkhäuser Boston 1998 1 Online-Ressource (XVI, 496 p) txt rdacontent c rdamedia cr rdacarrier Applied and Numerical Harmonic Analysis In his paper Theory of Communication [Gab46], D. Gabor proposed the use of a family of functions obtained from one Gaussian by time-and frequency shifts. Each of these is well concentrated in time and frequency; together they are meant to constitute a complete collection of building blocks into which more complicated time-depending functions can be decomposed. The application to communication proposed by Gabor was to send the coeffi cients of the decomposition into this family of a signal, rather than the signal itself. This remained a proposal-as far as I know there were no seri ous attempts to implement it for communication purposes in practice, and in fact, at the critical time-frequency density proposed originally, there is a mathematical obstruction; as was understood later, the family of shifted and modulated Gaussians spans the space of square integrable functions [BBGK71, Per71] (it even has one function to spare [BGZ75] . . . ) but it does not constitute what we now call a frame, leading to numerical insta bilities. The Balian-Low theorem (about which the reader can find more in some of the contributions in this book) and its extensions showed that a similar mishap occurs if the Gaussian is replaced by any other function that is "reasonably" smooth and localized. One is thus led naturally to considering a higher time-frequency density Mathematics Functional analysis Engineering mathematics Applications of Mathematics Signal, Image and Speech Processing Appl.Mathematics/Computational Methods of Engineering Functional Analysis Mathematik Gabor-Transformation (DE-588)4410111-9 gnd rswk-swf Bildverarbeitung (DE-588)4006684-8 gnd rswk-swf Digitale Signalverarbeitung (DE-588)4113314-6 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Bildverarbeitung (DE-588)4006684-8 s Mathematische Methode (DE-588)4155620-3 s 1\p DE-604 Digitale Signalverarbeitung (DE-588)4113314-6 s 2\p DE-604 Gabor-Transformation (DE-588)4410111-9 s 3\p DE-604 Strohmer, Thomas Sonstige (DE-588)1147161585 oth https://doi.org/10.1007/978-1-4612-2016-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Feichtinger, Hans G. 1951- Gabor Analysis and Algorithms Theory and Applications Mathematics Functional analysis Engineering mathematics Applications of Mathematics Signal, Image and Speech Processing Appl.Mathematics/Computational Methods of Engineering Functional Analysis Mathematik Gabor-Transformation (DE-588)4410111-9 gnd Bildverarbeitung (DE-588)4006684-8 gnd Digitale Signalverarbeitung (DE-588)4113314-6 gnd Mathematische Methode (DE-588)4155620-3 gnd |
subject_GND | (DE-588)4410111-9 (DE-588)4006684-8 (DE-588)4113314-6 (DE-588)4155620-3 |
title | Gabor Analysis and Algorithms Theory and Applications |
title_auth | Gabor Analysis and Algorithms Theory and Applications |
title_exact_search | Gabor Analysis and Algorithms Theory and Applications |
title_full | Gabor Analysis and Algorithms Theory and Applications edited by Hans G. Feichtinger, Thomas Strohmer |
title_fullStr | Gabor Analysis and Algorithms Theory and Applications edited by Hans G. Feichtinger, Thomas Strohmer |
title_full_unstemmed | Gabor Analysis and Algorithms Theory and Applications edited by Hans G. Feichtinger, Thomas Strohmer |
title_short | Gabor Analysis and Algorithms |
title_sort | gabor analysis and algorithms theory and applications |
title_sub | Theory and Applications |
topic | Mathematics Functional analysis Engineering mathematics Applications of Mathematics Signal, Image and Speech Processing Appl.Mathematics/Computational Methods of Engineering Functional Analysis Mathematik Gabor-Transformation (DE-588)4410111-9 gnd Bildverarbeitung (DE-588)4006684-8 gnd Digitale Signalverarbeitung (DE-588)4113314-6 gnd Mathematische Methode (DE-588)4155620-3 gnd |
topic_facet | Mathematics Functional analysis Engineering mathematics Applications of Mathematics Signal, Image and Speech Processing Appl.Mathematics/Computational Methods of Engineering Functional Analysis Mathematik Gabor-Transformation Bildverarbeitung Digitale Signalverarbeitung Mathematische Methode |
url | https://doi.org/10.1007/978-1-4612-2016-9 |
work_keys_str_mv | AT feichtingerhansg gaboranalysisandalgorithmstheoryandapplications AT strohmerthomas gaboranalysisandalgorithmstheoryandapplications |