Probability Theory: Independence, Interchangeability, Martingales
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1997
|
Ausgabe: | Third Edition |
Schriftenreihe: | Springer Texts in Statistics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Now available in paperback. This is a text comprising the major theorems of probability theory and the measure theoretical foundations of the subject. The main topics treated are independence, interchangeability,and martingales; particular emphasis is placed upon stopping times, both as tools in proving theorems and as objects of interest themselves. No prior knowledge of measure theory is assumed and a unique feature of the book is the combined presentation of measure and probability. It is easily adapted for graduate students familar with measure theory as indicated by the guidelines in the preface. Special features include: A comprehensive treatment of the law of the iterated logarithm; the Marcinklewicz-Zygmund inequality, its extension to martingales and applications thereof; development and applications of the second moment analogue of Wald's equation; limit theorems for martingale arrays, the central limit theorem for the interchangeable and martingale cases, moment convergence in the central limit theorem; complete discussion, including central limit theorem, of the random casting of r balls into n cells; recent martingale inequalities; Cram r-L vy theore and factor-closed families of distributions. This edition includes a section dealing with U-statistic, adds additional theorems and examples, and includes simpler versions of some proofs |
Beschreibung: | 1 Online-Ressource (XXII, 489 p) |
ISBN: | 9781461219507 9780387406077 |
ISSN: | 1431-875X |
DOI: | 10.1007/978-1-4612-1950-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419941 | ||
003 | DE-604 | ||
005 | 20160906 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9781461219507 |c Online |9 978-1-4612-1950-7 | ||
020 | |a 9780387406077 |c Print |9 978-0-387-40607-7 | ||
024 | 7 | |a 10.1007/978-1-4612-1950-7 |2 doi | |
035 | |a (OCoLC)863692907 | ||
035 | |a (DE-599)BVBBV042419941 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Chow, Yuan Shih |d 1924- |e Verfasser |0 (DE-588)1031598707 |4 aut | |
245 | 1 | 0 | |a Probability Theory |b Independence, Interchangeability, Martingales |c by Yuan Shih Chow, Henry Teicher |
250 | |a Third Edition | ||
264 | 1 | |a New York, NY |b Springer New York |c 1997 | |
300 | |a 1 Online-Ressource (XXII, 489 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Texts in Statistics |x 1431-875X | |
500 | |a Now available in paperback. This is a text comprising the major theorems of probability theory and the measure theoretical foundations of the subject. The main topics treated are independence, interchangeability,and martingales; particular emphasis is placed upon stopping times, both as tools in proving theorems and as objects of interest themselves. No prior knowledge of measure theory is assumed and a unique feature of the book is the combined presentation of measure and probability. It is easily adapted for graduate students familar with measure theory as indicated by the guidelines in the preface. Special features include: A comprehensive treatment of the law of the iterated logarithm; the Marcinklewicz-Zygmund inequality, its extension to martingales and applications thereof; development and applications of the second moment analogue of Wald's equation; limit theorems for martingale arrays, the central limit theorem for the interchangeable and martingale cases, moment convergence in the central limit theorem; complete discussion, including central limit theorem, of the random casting of r balls into n cells; recent martingale inequalities; Cram r-L vy theore and factor-closed families of distributions. This edition includes a section dealing with U-statistic, adds additional theorems and examples, and includes simpler versions of some proofs | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Martingal |0 (DE-588)4126466-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Martingal |0 (DE-588)4126466-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Teicher, Henry |d 1922- |e Sonstige |0 (DE-588)1031598804 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1950-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855358 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091204841472 |
---|---|
any_adam_object | |
author | Chow, Yuan Shih 1924- |
author_GND | (DE-588)1031598707 (DE-588)1031598804 |
author_facet | Chow, Yuan Shih 1924- |
author_role | aut |
author_sort | Chow, Yuan Shih 1924- |
author_variant | y s c ys ysc |
building | Verbundindex |
bvnumber | BV042419941 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863692907 (DE-599)BVBBV042419941 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1950-7 |
edition | Third Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03596nmm a2200577zc 4500</leader><controlfield tag="001">BV042419941</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160906 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461219507</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1950-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387406077</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-40607-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1950-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863692907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419941</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chow, Yuan Shih</subfield><subfield code="d">1924-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1031598707</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probability Theory</subfield><subfield code="b">Independence, Interchangeability, Martingales</subfield><subfield code="c">by Yuan Shih Chow, Henry Teicher</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 489 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Texts in Statistics</subfield><subfield code="x">1431-875X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Now available in paperback. This is a text comprising the major theorems of probability theory and the measure theoretical foundations of the subject. The main topics treated are independence, interchangeability,and martingales; particular emphasis is placed upon stopping times, both as tools in proving theorems and as objects of interest themselves. No prior knowledge of measure theory is assumed and a unique feature of the book is the combined presentation of measure and probability. It is easily adapted for graduate students familar with measure theory as indicated by the guidelines in the preface. Special features include: A comprehensive treatment of the law of the iterated logarithm; the Marcinklewicz-Zygmund inequality, its extension to martingales and applications thereof; development and applications of the second moment analogue of Wald's equation; limit theorems for martingale arrays, the central limit theorem for the interchangeable and martingale cases, moment convergence in the central limit theorem; complete discussion, including central limit theorem, of the random casting of r balls into n cells; recent martingale inequalities; Cram r-L vy theore and factor-closed families of distributions. This edition includes a section dealing with U-statistic, adds additional theorems and examples, and includes simpler versions of some proofs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teicher, Henry</subfield><subfield code="d">1922-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1031598804</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1950-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855358</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419941 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461219507 9780387406077 |
issn | 1431-875X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855358 |
oclc_num | 863692907 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXII, 489 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Texts in Statistics |
spelling | Chow, Yuan Shih 1924- Verfasser (DE-588)1031598707 aut Probability Theory Independence, Interchangeability, Martingales by Yuan Shih Chow, Henry Teicher Third Edition New York, NY Springer New York 1997 1 Online-Ressource (XXII, 489 p) txt rdacontent c rdamedia cr rdacarrier Springer Texts in Statistics 1431-875X Now available in paperback. This is a text comprising the major theorems of probability theory and the measure theoretical foundations of the subject. The main topics treated are independence, interchangeability,and martingales; particular emphasis is placed upon stopping times, both as tools in proving theorems and as objects of interest themselves. No prior knowledge of measure theory is assumed and a unique feature of the book is the combined presentation of measure and probability. It is easily adapted for graduate students familar with measure theory as indicated by the guidelines in the preface. Special features include: A comprehensive treatment of the law of the iterated logarithm; the Marcinklewicz-Zygmund inequality, its extension to martingales and applications thereof; development and applications of the second moment analogue of Wald's equation; limit theorems for martingale arrays, the central limit theorem for the interchangeable and martingale cases, moment convergence in the central limit theorem; complete discussion, including central limit theorem, of the random casting of r balls into n cells; recent martingale inequalities; Cram r-L vy theore and factor-closed families of distributions. This edition includes a section dealing with U-statistic, adds additional theorems and examples, and includes simpler versions of some proofs Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Martingal (DE-588)4126466-6 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 1\p DE-604 Martingal (DE-588)4126466-6 s 2\p DE-604 Wahrscheinlichkeitstheorie (DE-588)4079013-7 s 3\p DE-604 Teicher, Henry 1922- Sonstige (DE-588)1031598804 oth https://doi.org/10.1007/978-1-4612-1950-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Chow, Yuan Shih 1924- Probability Theory Independence, Interchangeability, Martingales Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Martingal (DE-588)4126466-6 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4126466-6 (DE-588)4064324-4 (DE-588)4079013-7 |
title | Probability Theory Independence, Interchangeability, Martingales |
title_auth | Probability Theory Independence, Interchangeability, Martingales |
title_exact_search | Probability Theory Independence, Interchangeability, Martingales |
title_full | Probability Theory Independence, Interchangeability, Martingales by Yuan Shih Chow, Henry Teicher |
title_fullStr | Probability Theory Independence, Interchangeability, Martingales by Yuan Shih Chow, Henry Teicher |
title_full_unstemmed | Probability Theory Independence, Interchangeability, Martingales by Yuan Shih Chow, Henry Teicher |
title_short | Probability Theory |
title_sort | probability theory independence interchangeability martingales |
title_sub | Independence, Interchangeability, Martingales |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Martingal (DE-588)4126466-6 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Martingal Wahrscheinlichkeitsrechnung Wahrscheinlichkeitstheorie |
url | https://doi.org/10.1007/978-1-4612-1950-7 |
work_keys_str_mv | AT chowyuanshih probabilitytheoryindependenceinterchangeabilitymartingales AT teicherhenry probabilitytheoryindependenceinterchangeabilitymartingales |