Problems and Solutions for Undergraduate Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1998
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The present volume contains all the exercises and their solutions for Lang's second edition of Undergraduate Analysis. The wide variety of exercises, which range from computational to more conceptual and which are of vary ing difficulty, cover the following subjects and more: real numbers, limits, continuous functions, differentiation and elementary integration, normed vector spaces, compactness, series, integration in one variable, improper integrals, convolutions, Fourier series and the Fourier integral, functions in n-space, derivatives in vector spaces, the inverse and implicit mapping theorem, ordinary differential equations, multiple integrals, and differential forms. My objective is to offer those learning and teaching analysis at the undergraduate level a large number of completed exercises and I hope that this book, which contains over 600 exercises covering the topics mentioned above, will achieve my goal. The exercises are an integral part of Lang's book and I encourage the reader to work through all of them. In some cases, the problems in the beginning chapters are used in later ones, for example, in Chapter IV when one constructs-bump functions, which are used to smooth out singulari ties, and prove that the space of functions is dense in the space of regu lated maps. The numbering of the problems is as follows. Exercise IX. 5. 7 indicates Exercise 7, §5, of Chapter IX. Acknowledgments I am grateful to Serge Lang for his help and enthusiasm in this project, as well as for teaching me mathematics (and much more) with so much generosity and patience |
Beschreibung: | 1 Online-Ressource (XII, 368 p) |
ISBN: | 9781461217381 9780387982359 |
DOI: | 10.1007/978-1-4612-1738-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419903 | ||
003 | DE-604 | ||
005 | 20160921 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781461217381 |c Online |9 978-1-4612-1738-1 | ||
020 | |a 9780387982359 |c Print |9 978-0-387-98235-9 | ||
024 | 7 | |a 10.1007/978-1-4612-1738-1 |2 doi | |
035 | |a (OCoLC)863699365 | ||
035 | |a (DE-599)BVBBV042419903 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.8 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Shakarchi, Rami |e Verfasser |0 (DE-588)14028138X |4 aut | |
245 | 1 | 0 | |a Problems and Solutions for Undergraduate Analysis |c by Rami Shakarchi |
264 | 1 | |a New York, NY |b Springer New York |c 1998 | |
300 | |a 1 Online-Ressource (XII, 368 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The present volume contains all the exercises and their solutions for Lang's second edition of Undergraduate Analysis. The wide variety of exercises, which range from computational to more conceptual and which are of vary ing difficulty, cover the following subjects and more: real numbers, limits, continuous functions, differentiation and elementary integration, normed vector spaces, compactness, series, integration in one variable, improper integrals, convolutions, Fourier series and the Fourier integral, functions in n-space, derivatives in vector spaces, the inverse and implicit mapping theorem, ordinary differential equations, multiple integrals, and differential forms. My objective is to offer those learning and teaching analysis at the undergraduate level a large number of completed exercises and I hope that this book, which contains over 600 exercises covering the topics mentioned above, will achieve my goal. The exercises are an integral part of Lang's book and I encourage the reader to work through all of them. In some cases, the problems in the beginning chapters are used in later ones, for example, in Chapter IV when one constructs-bump functions, which are used to smooth out singulari ties, and prove that the space of functions is dense in the space of regu lated maps. The numbering of the problems is as follows. Exercise IX. 5. 7 indicates Exercise 7, §5, of Chapter IX. Acknowledgments I am grateful to Serge Lang for his help and enthusiasm in this project, as well as for teaching me mathematics (and much more) with so much generosity and patience | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Katze |0 (DE-588)4030046-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4006604-6 |a Bilderbuch |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
655 | 7 | |8 3\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | |8 4\p |5 DE-604 | |
689 | 1 | 0 | |a Katze |0 (DE-588)4030046-8 |D s |
689 | 1 | |8 5\p |5 DE-604 | |
689 | 2 | 0 | |a Infinitesimalrechnung |0 (DE-588)4072798-1 |D s |
689 | 2 | |8 6\p |5 DE-604 | |
689 | 3 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 3 | |8 7\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1738-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855320 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091114663936 |
---|---|
any_adam_object | |
author | Shakarchi, Rami |
author_GND | (DE-588)14028138X |
author_facet | Shakarchi, Rami |
author_role | aut |
author_sort | Shakarchi, Rami |
author_variant | r s rs |
building | Verbundindex |
bvnumber | BV042419903 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863699365 (DE-599)BVBBV042419903 |
dewey-full | 515.8 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.8 |
dewey-search | 515.8 |
dewey-sort | 3515.8 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1738-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04159nmm a2200649zc 4500</leader><controlfield tag="001">BV042419903</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160921 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461217381</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1738-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387982359</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-98235-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1738-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863699365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419903</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shakarchi, Rami</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)14028138X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Problems and Solutions for Undergraduate Analysis</subfield><subfield code="c">by Rami Shakarchi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 368 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The present volume contains all the exercises and their solutions for Lang's second edition of Undergraduate Analysis. The wide variety of exercises, which range from computational to more conceptual and which are of vary ing difficulty, cover the following subjects and more: real numbers, limits, continuous functions, differentiation and elementary integration, normed vector spaces, compactness, series, integration in one variable, improper integrals, convolutions, Fourier series and the Fourier integral, functions in n-space, derivatives in vector spaces, the inverse and implicit mapping theorem, ordinary differential equations, multiple integrals, and differential forms. My objective is to offer those learning and teaching analysis at the undergraduate level a large number of completed exercises and I hope that this book, which contains over 600 exercises covering the topics mentioned above, will achieve my goal. The exercises are an integral part of Lang's book and I encourage the reader to work through all of them. In some cases, the problems in the beginning chapters are used in later ones, for example, in Chapter IV when one constructs-bump functions, which are used to smooth out singulari ties, and prove that the space of functions is dense in the space of regu lated maps. The numbering of the problems is as follows. Exercise IX. 5. 7 indicates Exercise 7, §5, of Chapter IX. Acknowledgments I am grateful to Serge Lang for his help and enthusiasm in this project, as well as for teaching me mathematics (and much more) with so much generosity and patience</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Katze</subfield><subfield code="0">(DE-588)4030046-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4006604-6</subfield><subfield code="a">Bilderbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">3\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Katze</subfield><subfield code="0">(DE-588)4030046-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Infinitesimalrechnung</subfield><subfield code="0">(DE-588)4072798-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1738-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855320</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4006604-6 Bilderbuch gnd-content 2\p (DE-588)4143389-0 Aufgabensammlung gnd-content 3\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Bilderbuch Aufgabensammlung Lehrbuch |
id | DE-604.BV042419903 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461217381 9780387982359 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855320 |
oclc_num | 863699365 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 368 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer New York |
record_format | marc |
spelling | Shakarchi, Rami Verfasser (DE-588)14028138X aut Problems and Solutions for Undergraduate Analysis by Rami Shakarchi New York, NY Springer New York 1998 1 Online-Ressource (XII, 368 p) txt rdacontent c rdamedia cr rdacarrier The present volume contains all the exercises and their solutions for Lang's second edition of Undergraduate Analysis. The wide variety of exercises, which range from computational to more conceptual and which are of vary ing difficulty, cover the following subjects and more: real numbers, limits, continuous functions, differentiation and elementary integration, normed vector spaces, compactness, series, integration in one variable, improper integrals, convolutions, Fourier series and the Fourier integral, functions in n-space, derivatives in vector spaces, the inverse and implicit mapping theorem, ordinary differential equations, multiple integrals, and differential forms. My objective is to offer those learning and teaching analysis at the undergraduate level a large number of completed exercises and I hope that this book, which contains over 600 exercises covering the topics mentioned above, will achieve my goal. The exercises are an integral part of Lang's book and I encourage the reader to work through all of them. In some cases, the problems in the beginning chapters are used in later ones, for example, in Chapter IV when one constructs-bump functions, which are used to smooth out singulari ties, and prove that the space of functions is dense in the space of regu lated maps. The numbering of the problems is as follows. Exercise IX. 5. 7 indicates Exercise 7, §5, of Chapter IX. Acknowledgments I am grateful to Serge Lang for his help and enthusiasm in this project, as well as for teaching me mathematics (and much more) with so much generosity and patience Mathematics Real Functions Mathematik Infinitesimalrechnung (DE-588)4072798-1 gnd rswk-swf Analysis (DE-588)4001865-9 gnd rswk-swf Katze (DE-588)4030046-8 gnd rswk-swf Algebra (DE-588)4001156-2 gnd rswk-swf 1\p (DE-588)4006604-6 Bilderbuch gnd-content 2\p (DE-588)4143389-0 Aufgabensammlung gnd-content 3\p (DE-588)4123623-3 Lehrbuch gnd-content Analysis (DE-588)4001865-9 s 4\p DE-604 Katze (DE-588)4030046-8 s 5\p DE-604 Infinitesimalrechnung (DE-588)4072798-1 s 6\p DE-604 Algebra (DE-588)4001156-2 s 7\p DE-604 https://doi.org/10.1007/978-1-4612-1738-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Shakarchi, Rami Problems and Solutions for Undergraduate Analysis Mathematics Real Functions Mathematik Infinitesimalrechnung (DE-588)4072798-1 gnd Analysis (DE-588)4001865-9 gnd Katze (DE-588)4030046-8 gnd Algebra (DE-588)4001156-2 gnd |
subject_GND | (DE-588)4072798-1 (DE-588)4001865-9 (DE-588)4030046-8 (DE-588)4001156-2 (DE-588)4006604-6 (DE-588)4143389-0 (DE-588)4123623-3 |
title | Problems and Solutions for Undergraduate Analysis |
title_auth | Problems and Solutions for Undergraduate Analysis |
title_exact_search | Problems and Solutions for Undergraduate Analysis |
title_full | Problems and Solutions for Undergraduate Analysis by Rami Shakarchi |
title_fullStr | Problems and Solutions for Undergraduate Analysis by Rami Shakarchi |
title_full_unstemmed | Problems and Solutions for Undergraduate Analysis by Rami Shakarchi |
title_short | Problems and Solutions for Undergraduate Analysis |
title_sort | problems and solutions for undergraduate analysis |
topic | Mathematics Real Functions Mathematik Infinitesimalrechnung (DE-588)4072798-1 gnd Analysis (DE-588)4001865-9 gnd Katze (DE-588)4030046-8 gnd Algebra (DE-588)4001156-2 gnd |
topic_facet | Mathematics Real Functions Mathematik Infinitesimalrechnung Analysis Katze Algebra Bilderbuch Aufgabensammlung Lehrbuch |
url | https://doi.org/10.1007/978-1-4612-1738-1 |
work_keys_str_mv | AT shakarchirami problemsandsolutionsforundergraduateanalysis |