Statistical Inference for Spatial Poisson Processes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1998
|
Schriftenreihe: | Lecture Notes in Statistics
134 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This work is devoted to several problems of parametric (mainly) and nonparametric estimation through the observation of Poisson processes defined on general spaces. Poisson processes are quite popular in applied research and therefore they attract the attention of many statisticians. There are a lot of good books on point processes and many of them contain chapters devoted to statistical inference for general and partic ular models of processes. There are even chapters on statistical estimation problems for inhomogeneous Poisson processes in asymptotic statements. Nevertheless it seems that the asymptotic theory of estimation for nonlinear models of Poisson processes needs some development. Here nonlinear means the models of inhomogeneous Pois son processes with intensity function nonlinearly depending on unknown parameters. In such situations the estimators usually cannot be written in exact form and are given as solutions of some equations. However the models can be quite fruitful in en gineering problems and the existing computing algorithms are sufficiently powerful to calculate these estimators. Therefore the properties of estimators can be interesting too |
Beschreibung: | 1 Online-Ressource (VII, 276p) |
ISBN: | 9781461217060 9780387985626 |
ISSN: | 0930-0325 |
DOI: | 10.1007/978-1-4612-1706-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419893 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9781461217060 |c Online |9 978-1-4612-1706-0 | ||
020 | |a 9780387985626 |c Print |9 978-0-387-98562-6 | ||
024 | 7 | |a 10.1007/978-1-4612-1706-0 |2 doi | |
035 | |a (OCoLC)1184322930 | ||
035 | |a (DE-599)BVBBV042419893 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kutoyants, Yu. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Statistical Inference for Spatial Poisson Processes |c by Yu. A. Kutoyants |
264 | 1 | |a New York, NY |b Springer New York |c 1998 | |
300 | |a 1 Online-Ressource (VII, 276p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Statistics |v 134 |x 0930-0325 | |
500 | |a This work is devoted to several problems of parametric (mainly) and nonparametric estimation through the observation of Poisson processes defined on general spaces. Poisson processes are quite popular in applied research and therefore they attract the attention of many statisticians. There are a lot of good books on point processes and many of them contain chapters devoted to statistical inference for general and partic ular models of processes. There are even chapters on statistical estimation problems for inhomogeneous Poisson processes in asymptotic statements. Nevertheless it seems that the asymptotic theory of estimation for nonlinear models of Poisson processes needs some development. Here nonlinear means the models of inhomogeneous Pois son processes with intensity function nonlinearly depending on unknown parameters. In such situations the estimators usually cannot be written in exact form and are given as solutions of some equations. However the models can be quite fruitful in en gineering problems and the existing computing algorithms are sufficiently powerful to calculate these estimators. Therefore the properties of estimators can be interesting too | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Parameterschätzung |0 (DE-588)4044614-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Poisson-Prozess |0 (DE-588)4174971-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Poisson-Prozess |0 (DE-588)4174971-6 |D s |
689 | 0 | 1 | |a Parameterschätzung |0 (DE-588)4044614-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1706-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855310 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091103129600 |
---|---|
any_adam_object | |
author | Kutoyants, Yu. A. |
author_facet | Kutoyants, Yu. A. |
author_role | aut |
author_sort | Kutoyants, Yu. A. |
author_variant | y a k ya yak |
building | Verbundindex |
bvnumber | BV042419893 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184322930 (DE-599)BVBBV042419893 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1706-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02811nmm a2200469zcb4500</leader><controlfield tag="001">BV042419893</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461217060</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1706-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387985626</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-98562-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1706-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184322930</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419893</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kutoyants, Yu. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical Inference for Spatial Poisson Processes</subfield><subfield code="c">by Yu. A. Kutoyants</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 276p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">134</subfield><subfield code="x">0930-0325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This work is devoted to several problems of parametric (mainly) and nonparametric estimation through the observation of Poisson processes defined on general spaces. Poisson processes are quite popular in applied research and therefore they attract the attention of many statisticians. There are a lot of good books on point processes and many of them contain chapters devoted to statistical inference for general and partic ular models of processes. There are even chapters on statistical estimation problems for inhomogeneous Poisson processes in asymptotic statements. Nevertheless it seems that the asymptotic theory of estimation for nonlinear models of Poisson processes needs some development. Here nonlinear means the models of inhomogeneous Pois son processes with intensity function nonlinearly depending on unknown parameters. In such situations the estimators usually cannot be written in exact form and are given as solutions of some equations. However the models can be quite fruitful in en gineering problems and the existing computing algorithms are sufficiently powerful to calculate these estimators. Therefore the properties of estimators can be interesting too</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parameterschätzung</subfield><subfield code="0">(DE-588)4044614-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Poisson-Prozess</subfield><subfield code="0">(DE-588)4174971-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Poisson-Prozess</subfield><subfield code="0">(DE-588)4174971-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Parameterschätzung</subfield><subfield code="0">(DE-588)4044614-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1706-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855310</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419893 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461217060 9780387985626 |
issn | 0930-0325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855310 |
oclc_num | 1184322930 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 276p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer New York |
record_format | marc |
series2 | Lecture Notes in Statistics |
spelling | Kutoyants, Yu. A. Verfasser aut Statistical Inference for Spatial Poisson Processes by Yu. A. Kutoyants New York, NY Springer New York 1998 1 Online-Ressource (VII, 276p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Statistics 134 0930-0325 This work is devoted to several problems of parametric (mainly) and nonparametric estimation through the observation of Poisson processes defined on general spaces. Poisson processes are quite popular in applied research and therefore they attract the attention of many statisticians. There are a lot of good books on point processes and many of them contain chapters devoted to statistical inference for general and partic ular models of processes. There are even chapters on statistical estimation problems for inhomogeneous Poisson processes in asymptotic statements. Nevertheless it seems that the asymptotic theory of estimation for nonlinear models of Poisson processes needs some development. Here nonlinear means the models of inhomogeneous Pois son processes with intensity function nonlinearly depending on unknown parameters. In such situations the estimators usually cannot be written in exact form and are given as solutions of some equations. However the models can be quite fruitful in en gineering problems and the existing computing algorithms are sufficiently powerful to calculate these estimators. Therefore the properties of estimators can be interesting too Statistics Statistics, general Statistik Parameterschätzung (DE-588)4044614-1 gnd rswk-swf Poisson-Prozess (DE-588)4174971-6 gnd rswk-swf Poisson-Prozess (DE-588)4174971-6 s Parameterschätzung (DE-588)4044614-1 s 1\p DE-604 https://doi.org/10.1007/978-1-4612-1706-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kutoyants, Yu. A. Statistical Inference for Spatial Poisson Processes Statistics Statistics, general Statistik Parameterschätzung (DE-588)4044614-1 gnd Poisson-Prozess (DE-588)4174971-6 gnd |
subject_GND | (DE-588)4044614-1 (DE-588)4174971-6 |
title | Statistical Inference for Spatial Poisson Processes |
title_auth | Statistical Inference for Spatial Poisson Processes |
title_exact_search | Statistical Inference for Spatial Poisson Processes |
title_full | Statistical Inference for Spatial Poisson Processes by Yu. A. Kutoyants |
title_fullStr | Statistical Inference for Spatial Poisson Processes by Yu. A. Kutoyants |
title_full_unstemmed | Statistical Inference for Spatial Poisson Processes by Yu. A. Kutoyants |
title_short | Statistical Inference for Spatial Poisson Processes |
title_sort | statistical inference for spatial poisson processes |
topic | Statistics Statistics, general Statistik Parameterschätzung (DE-588)4044614-1 gnd Poisson-Prozess (DE-588)4174971-6 gnd |
topic_facet | Statistics Statistics, general Statistik Parameterschätzung Poisson-Prozess |
url | https://doi.org/10.1007/978-1-4612-1706-0 |
work_keys_str_mv | AT kutoyantsyua statisticalinferenceforspatialpoissonprocesses |