Mutational and Morphological Analysis: Tools for Shape Evolution and Morphogenesis
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1999
|
Schriftenreihe: | Systems & Control: Foundations & Applications
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The analysis, processing, evolution, optimization and/or regulation, and control of shapes and images appear naturally in engineering (shape optimization, image processing, visual control), numerical analysis (interval analysis), physics (front propagation), biological morphogenesis, population dynamics (migrations), and dynamic economic theory. These problems are currently studied with tools forged out of differential geometry and functional analysis, thus requiring shapes and images to be smooth. However, shapes and images are basically sets, most often not smooth. J.-P. Aubin thus constructs another vision, where shapes and images are just any compact set. Hence their evolution -- which requires a kind of differential calculus -- must be studied in the metric space of compact subsets. Despite the loss of linearity, one can transfer most of the basic results of differential calculus and differential equations in vector spaces to mutational calculus and mutational equations in any mutational space, including naturally the space of nonempty compact subsets. "Mutational and Morphological Analysis" offers a structure that embraces and integrates the various approaches, including shape optimization and mathematical morphology. Scientists and graduate students will find here other powerful mathematical tools for studying problems dealing with shapes and images arising in so many fields |
Beschreibung: | 1 Online-Ressource (XXXVII, 425 p) |
ISBN: | 9781461215769 9781461272007 |
ISSN: | 2324-9749 |
DOI: | 10.1007/978-1-4612-1576-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419868 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461215769 |c Online |9 978-1-4612-1576-9 | ||
020 | |a 9781461272007 |c Print |9 978-1-4612-7200-7 | ||
024 | 7 | |a 10.1007/978-1-4612-1576-9 |2 doi | |
035 | |a (OCoLC)1184324020 | ||
035 | |a (DE-599)BVBBV042419868 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Aubin, Jean-Pierre |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mutational and Morphological Analysis |b Tools for Shape Evolution and Morphogenesis |c by Jean-Pierre Aubin |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1999 | |
300 | |a 1 Online-Ressource (XXXVII, 425 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Systems & Control: Foundations & Applications |x 2324-9749 | |
500 | |a The analysis, processing, evolution, optimization and/or regulation, and control of shapes and images appear naturally in engineering (shape optimization, image processing, visual control), numerical analysis (interval analysis), physics (front propagation), biological morphogenesis, population dynamics (migrations), and dynamic economic theory. These problems are currently studied with tools forged out of differential geometry and functional analysis, thus requiring shapes and images to be smooth. However, shapes and images are basically sets, most often not smooth. J.-P. Aubin thus constructs another vision, where shapes and images are just any compact set. Hence their evolution -- which requires a kind of differential calculus -- must be studied in the metric space of compact subsets. Despite the loss of linearity, one can transfer most of the basic results of differential calculus and differential equations in vector spaces to mutational calculus and mutational equations in any mutational space, including naturally the space of nonempty compact subsets. "Mutational and Morphological Analysis" offers a structure that embraces and integrates the various approaches, including shape optimization and mathematical morphology. Scientists and graduate students will find here other powerful mathematical tools for studying problems dealing with shapes and images arising in so many fields | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mathematische Morphologie |0 (DE-588)4505783-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mengenwertige Abbildung |0 (DE-588)4270772-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Shape-Theorie |0 (DE-588)4193842-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mengenwertige Abbildung |0 (DE-588)4270772-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mathematische Morphologie |0 (DE-588)4505783-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Shape-Theorie |0 (DE-588)4193842-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1576-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855285 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091034972160 |
---|---|
any_adam_object | |
author | Aubin, Jean-Pierre |
author_facet | Aubin, Jean-Pierre |
author_role | aut |
author_sort | Aubin, Jean-Pierre |
author_variant | j p a jpa |
building | Verbundindex |
bvnumber | BV042419868 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184324020 (DE-599)BVBBV042419868 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1576-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03630nmm a2200589zc 4500</leader><controlfield tag="001">BV042419868</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461215769</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1576-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461272007</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7200-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1576-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184324020</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419868</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aubin, Jean-Pierre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mutational and Morphological Analysis</subfield><subfield code="b">Tools for Shape Evolution and Morphogenesis</subfield><subfield code="c">by Jean-Pierre Aubin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXXVII, 425 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Systems & Control: Foundations & Applications</subfield><subfield code="x">2324-9749</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The analysis, processing, evolution, optimization and/or regulation, and control of shapes and images appear naturally in engineering (shape optimization, image processing, visual control), numerical analysis (interval analysis), physics (front propagation), biological morphogenesis, population dynamics (migrations), and dynamic economic theory. These problems are currently studied with tools forged out of differential geometry and functional analysis, thus requiring shapes and images to be smooth. However, shapes and images are basically sets, most often not smooth. J.-P. Aubin thus constructs another vision, where shapes and images are just any compact set. Hence their evolution -- which requires a kind of differential calculus -- must be studied in the metric space of compact subsets. Despite the loss of linearity, one can transfer most of the basic results of differential calculus and differential equations in vector spaces to mutational calculus and mutational equations in any mutational space, including naturally the space of nonempty compact subsets. "Mutational and Morphological Analysis" offers a structure that embraces and integrates the various approaches, including shape optimization and mathematical morphology. Scientists and graduate students will find here other powerful mathematical tools for studying problems dealing with shapes and images arising in so many fields</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Morphologie</subfield><subfield code="0">(DE-588)4505783-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mengenwertige Abbildung</subfield><subfield code="0">(DE-588)4270772-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Shape-Theorie</subfield><subfield code="0">(DE-588)4193842-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mengenwertige Abbildung</subfield><subfield code="0">(DE-588)4270772-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematische Morphologie</subfield><subfield code="0">(DE-588)4505783-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Shape-Theorie</subfield><subfield code="0">(DE-588)4193842-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1576-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855285</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419868 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461215769 9781461272007 |
issn | 2324-9749 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855285 |
oclc_num | 1184324020 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXXVII, 425 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Systems & Control: Foundations & Applications |
spelling | Aubin, Jean-Pierre Verfasser aut Mutational and Morphological Analysis Tools for Shape Evolution and Morphogenesis by Jean-Pierre Aubin Boston, MA Birkhäuser Boston 1999 1 Online-Ressource (XXXVII, 425 p) txt rdacontent c rdamedia cr rdacarrier Systems & Control: Foundations & Applications 2324-9749 The analysis, processing, evolution, optimization and/or regulation, and control of shapes and images appear naturally in engineering (shape optimization, image processing, visual control), numerical analysis (interval analysis), physics (front propagation), biological morphogenesis, population dynamics (migrations), and dynamic economic theory. These problems are currently studied with tools forged out of differential geometry and functional analysis, thus requiring shapes and images to be smooth. However, shapes and images are basically sets, most often not smooth. J.-P. Aubin thus constructs another vision, where shapes and images are just any compact set. Hence their evolution -- which requires a kind of differential calculus -- must be studied in the metric space of compact subsets. Despite the loss of linearity, one can transfer most of the basic results of differential calculus and differential equations in vector spaces to mutational calculus and mutational equations in any mutational space, including naturally the space of nonempty compact subsets. "Mutational and Morphological Analysis" offers a structure that embraces and integrates the various approaches, including shape optimization and mathematical morphology. Scientists and graduate students will find here other powerful mathematical tools for studying problems dealing with shapes and images arising in so many fields Mathematics Global analysis (Mathematics) Logic, Symbolic and mathematical Analysis Mathematical Logic and Foundations Applications of Mathematics Mathematik Mathematische Morphologie (DE-588)4505783-7 gnd rswk-swf Mengenwertige Abbildung (DE-588)4270772-9 gnd rswk-swf Shape-Theorie (DE-588)4193842-2 gnd rswk-swf Mengenwertige Abbildung (DE-588)4270772-9 s 1\p DE-604 Mathematische Morphologie (DE-588)4505783-7 s 2\p DE-604 Shape-Theorie (DE-588)4193842-2 s 3\p DE-604 https://doi.org/10.1007/978-1-4612-1576-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Aubin, Jean-Pierre Mutational and Morphological Analysis Tools for Shape Evolution and Morphogenesis Mathematics Global analysis (Mathematics) Logic, Symbolic and mathematical Analysis Mathematical Logic and Foundations Applications of Mathematics Mathematik Mathematische Morphologie (DE-588)4505783-7 gnd Mengenwertige Abbildung (DE-588)4270772-9 gnd Shape-Theorie (DE-588)4193842-2 gnd |
subject_GND | (DE-588)4505783-7 (DE-588)4270772-9 (DE-588)4193842-2 |
title | Mutational and Morphological Analysis Tools for Shape Evolution and Morphogenesis |
title_auth | Mutational and Morphological Analysis Tools for Shape Evolution and Morphogenesis |
title_exact_search | Mutational and Morphological Analysis Tools for Shape Evolution and Morphogenesis |
title_full | Mutational and Morphological Analysis Tools for Shape Evolution and Morphogenesis by Jean-Pierre Aubin |
title_fullStr | Mutational and Morphological Analysis Tools for Shape Evolution and Morphogenesis by Jean-Pierre Aubin |
title_full_unstemmed | Mutational and Morphological Analysis Tools for Shape Evolution and Morphogenesis by Jean-Pierre Aubin |
title_short | Mutational and Morphological Analysis |
title_sort | mutational and morphological analysis tools for shape evolution and morphogenesis |
title_sub | Tools for Shape Evolution and Morphogenesis |
topic | Mathematics Global analysis (Mathematics) Logic, Symbolic and mathematical Analysis Mathematical Logic and Foundations Applications of Mathematics Mathematik Mathematische Morphologie (DE-588)4505783-7 gnd Mengenwertige Abbildung (DE-588)4270772-9 gnd Shape-Theorie (DE-588)4193842-2 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Logic, Symbolic and mathematical Analysis Mathematical Logic and Foundations Applications of Mathematics Mathematik Mathematische Morphologie Mengenwertige Abbildung Shape-Theorie |
url | https://doi.org/10.1007/978-1-4612-1576-9 |
work_keys_str_mv | AT aubinjeanpierre mutationalandmorphologicalanalysistoolsforshapeevolutionandmorphogenesis |