Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis: A Frequency Domain Approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1999
|
Schriftenreihe: | Lecture Notes in Statistics
142 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | "Ninety percent of inspiration is perspiration. " [31] The Wiener approach to nonlinear stochastic systems [146] permits the representation of single-valued systems with memory for which a small perturbation of the input produces a small perturbation of the output. The Wiener functional series representation contains many transfer functions to describe entirely the input-output connections. Although, theoretically, these representations are elegant, in practice it is not feasible to estimate all the finite-order transfer functions (or the kernels) from a finite sample. One of the most important classes of stochastic systems, especially from a statistical point of view, is the case when all the transfer functions are determined by finitely many parameters. Therefore, one has to seek a finite-parameter nonlinear model which can adequately represent nonlinearity in a series. Among the special classes of nonlinear models that have been studied are the bilinear processes, which have found applications both in econometrics and control theory; see, for example, Granger and Andersen [43] and Ruberti, et al. [4]. These bilinear processes are defined to be linear in both input and output only, when either the input or output are fixed. The bilinear model was introduced by Granger and Andersen [43] and Subba Rao [118], [119]. Terdik [126] gave the solution of xii a lower triangular bilinear model in terms of multiple Wiener-It(') integrals and gave a sufficient condition for the second order stationarity. An important |
Beschreibung: | 1 Online-Ressource (XV, 270p) |
ISBN: | 9781461215523 9780387988726 |
ISSN: | 0930-0325 |
DOI: | 10.1007/978-1-4612-1552-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419857 | ||
003 | DE-604 | ||
005 | 20230508 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461215523 |c Online |9 978-1-4612-1552-3 | ||
020 | |a 9780387988726 |c Print |9 978-0-387-98872-6 | ||
024 | 7 | |a 10.1007/978-1-4612-1552-3 |2 doi | |
035 | |a (OCoLC)1184305166 | ||
035 | |a (DE-599)BVBBV042419857 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Terdik, György |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis |b A Frequency Domain Approach |c by György Terdik |
264 | 1 | |a New York, NY |b Springer New York |c 1999 | |
300 | |a 1 Online-Ressource (XV, 270p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture Notes in Statistics |v 142 |x 0930-0325 | |
500 | |a "Ninety percent of inspiration is perspiration. " [31] The Wiener approach to nonlinear stochastic systems [146] permits the representation of single-valued systems with memory for which a small perturbation of the input produces a small perturbation of the output. The Wiener functional series representation contains many transfer functions to describe entirely the input-output connections. Although, theoretically, these representations are elegant, in practice it is not feasible to estimate all the finite-order transfer functions (or the kernels) from a finite sample. One of the most important classes of stochastic systems, especially from a statistical point of view, is the case when all the transfer functions are determined by finitely many parameters. Therefore, one has to seek a finite-parameter nonlinear model which can adequately represent nonlinearity in a series. Among the special classes of nonlinear models that have been studied are the bilinear processes, which have found applications both in econometrics and control theory; see, for example, Granger and Andersen [43] and Ruberti, et al. [4]. These bilinear processes are defined to be linear in both input and output only, when either the input or output are fixed. The bilinear model was introduced by Granger and Andersen [43] and Subba Rao [118], [119]. Terdik [126] gave the solution of xii a lower triangular bilinear model in terms of multiple Wiener-It(') integrals and gave a sufficient condition for the second order stationarity. An important | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Bilineares Zeitreihenmodell |0 (DE-588)4145512-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Zeitreihenanalyse |0 (DE-588)4276267-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Zeitreihenanalyse |0 (DE-588)4276267-4 |D s |
689 | 0 | 1 | |a Bilineares Zeitreihenmodell |0 (DE-588)4145512-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Lecture Notes in Statistics |v 142 |w (DE-604)BV036592911 |9 142 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1552-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855274 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153091000369152 |
---|---|
any_adam_object | |
author | Terdik, György |
author_facet | Terdik, György |
author_role | aut |
author_sort | Terdik, György |
author_variant | g t gt |
building | Verbundindex |
bvnumber | BV042419857 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184305166 (DE-599)BVBBV042419857 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1552-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03335nmm a2200481zcb4500</leader><controlfield tag="001">BV042419857</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230508 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461215523</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1552-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387988726</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-98872-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1552-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184305166</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419857</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Terdik, György</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis</subfield><subfield code="b">A Frequency Domain Approach</subfield><subfield code="c">by György Terdik</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 270p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">142</subfield><subfield code="x">0930-0325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"Ninety percent of inspiration is perspiration. " [31] The Wiener approach to nonlinear stochastic systems [146] permits the representation of single-valued systems with memory for which a small perturbation of the input produces a small perturbation of the output. The Wiener functional series representation contains many transfer functions to describe entirely the input-output connections. Although, theoretically, these representations are elegant, in practice it is not feasible to estimate all the finite-order transfer functions (or the kernels) from a finite sample. One of the most important classes of stochastic systems, especially from a statistical point of view, is the case when all the transfer functions are determined by finitely many parameters. Therefore, one has to seek a finite-parameter nonlinear model which can adequately represent nonlinearity in a series. Among the special classes of nonlinear models that have been studied are the bilinear processes, which have found applications both in econometrics and control theory; see, for example, Granger and Andersen [43] and Ruberti, et al. [4]. These bilinear processes are defined to be linear in both input and output only, when either the input or output are fixed. The bilinear model was introduced by Granger and Andersen [43] and Subba Rao [118], [119]. Terdik [126] gave the solution of xii a lower triangular bilinear model in terms of multiple Wiener-It(') integrals and gave a sufficient condition for the second order stationarity. An important</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bilineares Zeitreihenmodell</subfield><subfield code="0">(DE-588)4145512-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4276267-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4276267-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bilineares Zeitreihenmodell</subfield><subfield code="0">(DE-588)4145512-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">142</subfield><subfield code="w">(DE-604)BV036592911</subfield><subfield code="9">142</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1552-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855274</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419857 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461215523 9780387988726 |
issn | 0930-0325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855274 |
oclc_num | 1184305166 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 270p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer New York |
record_format | marc |
series | Lecture Notes in Statistics |
series2 | Lecture Notes in Statistics |
spelling | Terdik, György Verfasser aut Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis A Frequency Domain Approach by György Terdik New York, NY Springer New York 1999 1 Online-Ressource (XV, 270p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Statistics 142 0930-0325 "Ninety percent of inspiration is perspiration. " [31] The Wiener approach to nonlinear stochastic systems [146] permits the representation of single-valued systems with memory for which a small perturbation of the input produces a small perturbation of the output. The Wiener functional series representation contains many transfer functions to describe entirely the input-output connections. Although, theoretically, these representations are elegant, in practice it is not feasible to estimate all the finite-order transfer functions (or the kernels) from a finite sample. One of the most important classes of stochastic systems, especially from a statistical point of view, is the case when all the transfer functions are determined by finitely many parameters. Therefore, one has to seek a finite-parameter nonlinear model which can adequately represent nonlinearity in a series. Among the special classes of nonlinear models that have been studied are the bilinear processes, which have found applications both in econometrics and control theory; see, for example, Granger and Andersen [43] and Ruberti, et al. [4]. These bilinear processes are defined to be linear in both input and output only, when either the input or output are fixed. The bilinear model was introduced by Granger and Andersen [43] and Subba Rao [118], [119]. Terdik [126] gave the solution of xii a lower triangular bilinear model in terms of multiple Wiener-It(') integrals and gave a sufficient condition for the second order stationarity. An important Statistics Statistics, general Statistik Bilineares Zeitreihenmodell (DE-588)4145512-5 gnd rswk-swf Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 gnd rswk-swf Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 s Bilineares Zeitreihenmodell (DE-588)4145512-5 s 1\p DE-604 Lecture Notes in Statistics 142 (DE-604)BV036592911 142 https://doi.org/10.1007/978-1-4612-1552-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Terdik, György Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis A Frequency Domain Approach Lecture Notes in Statistics Statistics Statistics, general Statistik Bilineares Zeitreihenmodell (DE-588)4145512-5 gnd Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 gnd |
subject_GND | (DE-588)4145512-5 (DE-588)4276267-4 |
title | Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis A Frequency Domain Approach |
title_auth | Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis A Frequency Domain Approach |
title_exact_search | Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis A Frequency Domain Approach |
title_full | Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis A Frequency Domain Approach by György Terdik |
title_fullStr | Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis A Frequency Domain Approach by György Terdik |
title_full_unstemmed | Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis A Frequency Domain Approach by György Terdik |
title_short | Bilinear Stochastic Models and Related Problems of Nonlinear Time Series Analysis |
title_sort | bilinear stochastic models and related problems of nonlinear time series analysis a frequency domain approach |
title_sub | A Frequency Domain Approach |
topic | Statistics Statistics, general Statistik Bilineares Zeitreihenmodell (DE-588)4145512-5 gnd Nichtlineare Zeitreihenanalyse (DE-588)4276267-4 gnd |
topic_facet | Statistics Statistics, general Statistik Bilineares Zeitreihenmodell Nichtlineare Zeitreihenanalyse |
url | https://doi.org/10.1007/978-1-4612-1552-3 |
volume_link | (DE-604)BV036592911 |
work_keys_str_mv | AT terdikgyorgy bilinearstochasticmodelsandrelatedproblemsofnonlineartimeseriesanalysisafrequencydomainapproach |