The Inverse Gaussian Distribution: Statistical Theory and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1999
|
Schriftenreihe: | Lecture Notes in Statistics
137 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is written in the hope that it will serve as a companion volume to my first monograph. The first monograph was largely devoted to the probabilistic aspects of the inverse Gaussian law and therefore ignored the statistical issues and related data analyses. Ever since the appearance of the book by Chhikara and Folks, a considerable number of publications in both theory and applications of the inverse Gaussian law have emerged thereby justifying the need for a comprehensive treatment of the issues involved. This book is divided into two sections and fills up the gap updating the material found in the book of Chhikara and Folks. Part I contains seven chapters and covers distribution theory, estimation, significance tests, goodness-of-fit, sequential analysis and compound laws and mixtures. The first part forms the backbone of the theory and wherever possible I have provided illustrative examples for easy assimilation of the theory. The second part is devoted to a wide range of applications from various disciplines. The applied statistician will find numerous instances of examples which pertain to a first passage time situation. It is indeed remarkable that in the fields of life testing, ecology, entomology, health sciences, traffic intensity and management science the inverse Gaussian law plays a dominant role. Real life examples from actuarial science and ecology came to my attention after this project was completed and I found it impossible to include them |
Beschreibung: | 1 Online-Ressource (XII, 347p) |
ISBN: | 9781461214564 9780387986180 |
ISSN: | 0930-0325 |
DOI: | 10.1007/978-1-4612-1456-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419835 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461214564 |c Online |9 978-1-4612-1456-4 | ||
020 | |a 9780387986180 |c Print |9 978-0-387-98618-0 | ||
024 | 7 | |a 10.1007/978-1-4612-1456-4 |2 doi | |
035 | |a (OCoLC)863701871 | ||
035 | |a (DE-599)BVBBV042419835 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Seshadri, V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Inverse Gaussian Distribution |b Statistical Theory and Applications |c by V. Seshadri |
264 | 1 | |a New York, NY |b Springer New York |c 1999 | |
300 | |a 1 Online-Ressource (XII, 347p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Statistics |v 137 |x 0930-0325 | |
500 | |a This book is written in the hope that it will serve as a companion volume to my first monograph. The first monograph was largely devoted to the probabilistic aspects of the inverse Gaussian law and therefore ignored the statistical issues and related data analyses. Ever since the appearance of the book by Chhikara and Folks, a considerable number of publications in both theory and applications of the inverse Gaussian law have emerged thereby justifying the need for a comprehensive treatment of the issues involved. This book is divided into two sections and fills up the gap updating the material found in the book of Chhikara and Folks. Part I contains seven chapters and covers distribution theory, estimation, significance tests, goodness-of-fit, sequential analysis and compound laws and mixtures. The first part forms the backbone of the theory and wherever possible I have provided illustrative examples for easy assimilation of the theory. The second part is devoted to a wide range of applications from various disciplines. The applied statistician will find numerous instances of examples which pertain to a first passage time situation. It is indeed remarkable that in the fields of life testing, ecology, entomology, health sciences, traffic intensity and management science the inverse Gaussian law plays a dominant role. Real life examples from actuarial science and ecology came to my attention after this project was completed and I found it impossible to include them | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a Normalverteilung |0 (DE-588)4075494-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inverse Normalverteilung |0 (DE-588)4162227-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Signifikanztest |0 (DE-588)4054949-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schätzung |0 (DE-588)4193791-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Inverse Normalverteilung |0 (DE-588)4162227-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Signifikanztest |0 (DE-588)4054949-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Schätzung |0 (DE-588)4193791-0 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Normalverteilung |0 (DE-588)4075494-7 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1456-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855252 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090942697472 |
---|---|
any_adam_object | |
author | Seshadri, V. |
author_facet | Seshadri, V. |
author_role | aut |
author_sort | Seshadri, V. |
author_variant | v s vs |
building | Verbundindex |
bvnumber | BV042419835 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863701871 (DE-599)BVBBV042419835 |
dewey-full | 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5 |
dewey-search | 519.5 |
dewey-sort | 3519.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1456-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03710nmm a2200589zcb4500</leader><controlfield tag="001">BV042419835</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461214564</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1456-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387986180</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-98618-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1456-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863701871</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419835</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Seshadri, V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Inverse Gaussian Distribution</subfield><subfield code="b">Statistical Theory and Applications</subfield><subfield code="c">by V. Seshadri</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 347p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Statistics</subfield><subfield code="v">137</subfield><subfield code="x">0930-0325</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is written in the hope that it will serve as a companion volume to my first monograph. The first monograph was largely devoted to the probabilistic aspects of the inverse Gaussian law and therefore ignored the statistical issues and related data analyses. Ever since the appearance of the book by Chhikara and Folks, a considerable number of publications in both theory and applications of the inverse Gaussian law have emerged thereby justifying the need for a comprehensive treatment of the issues involved. This book is divided into two sections and fills up the gap updating the material found in the book of Chhikara and Folks. Part I contains seven chapters and covers distribution theory, estimation, significance tests, goodness-of-fit, sequential analysis and compound laws and mixtures. The first part forms the backbone of the theory and wherever possible I have provided illustrative examples for easy assimilation of the theory. The second part is devoted to a wide range of applications from various disciplines. The applied statistician will find numerous instances of examples which pertain to a first passage time situation. It is indeed remarkable that in the fields of life testing, ecology, entomology, health sciences, traffic intensity and management science the inverse Gaussian law plays a dominant role. Real life examples from actuarial science and ecology came to my attention after this project was completed and I found it impossible to include them</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Normalverteilung</subfield><subfield code="0">(DE-588)4075494-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverse Normalverteilung</subfield><subfield code="0">(DE-588)4162227-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signifikanztest</subfield><subfield code="0">(DE-588)4054949-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schätzung</subfield><subfield code="0">(DE-588)4193791-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Inverse Normalverteilung</subfield><subfield code="0">(DE-588)4162227-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Signifikanztest</subfield><subfield code="0">(DE-588)4054949-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Schätzung</subfield><subfield code="0">(DE-588)4193791-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Normalverteilung</subfield><subfield code="0">(DE-588)4075494-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1456-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855252</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419835 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461214564 9780387986180 |
issn | 0930-0325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855252 |
oclc_num | 863701871 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 347p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer New York |
record_format | marc |
series2 | Lecture Notes in Statistics |
spelling | Seshadri, V. Verfasser aut The Inverse Gaussian Distribution Statistical Theory and Applications by V. Seshadri New York, NY Springer New York 1999 1 Online-Ressource (XII, 347p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Statistics 137 0930-0325 This book is written in the hope that it will serve as a companion volume to my first monograph. The first monograph was largely devoted to the probabilistic aspects of the inverse Gaussian law and therefore ignored the statistical issues and related data analyses. Ever since the appearance of the book by Chhikara and Folks, a considerable number of publications in both theory and applications of the inverse Gaussian law have emerged thereby justifying the need for a comprehensive treatment of the issues involved. This book is divided into two sections and fills up the gap updating the material found in the book of Chhikara and Folks. Part I contains seven chapters and covers distribution theory, estimation, significance tests, goodness-of-fit, sequential analysis and compound laws and mixtures. The first part forms the backbone of the theory and wherever possible I have provided illustrative examples for easy assimilation of the theory. The second part is devoted to a wide range of applications from various disciplines. The applied statistician will find numerous instances of examples which pertain to a first passage time situation. It is indeed remarkable that in the fields of life testing, ecology, entomology, health sciences, traffic intensity and management science the inverse Gaussian law plays a dominant role. Real life examples from actuarial science and ecology came to my attention after this project was completed and I found it impossible to include them Statistics Statistics, general Statistik Normalverteilung (DE-588)4075494-7 gnd rswk-swf Inverse Normalverteilung (DE-588)4162227-3 gnd rswk-swf Signifikanztest (DE-588)4054949-5 gnd rswk-swf Schätzung (DE-588)4193791-0 gnd rswk-swf Inverse Normalverteilung (DE-588)4162227-3 s 1\p DE-604 Signifikanztest (DE-588)4054949-5 s 2\p DE-604 Schätzung (DE-588)4193791-0 s 3\p DE-604 Normalverteilung (DE-588)4075494-7 s 4\p DE-604 https://doi.org/10.1007/978-1-4612-1456-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Seshadri, V. The Inverse Gaussian Distribution Statistical Theory and Applications Statistics Statistics, general Statistik Normalverteilung (DE-588)4075494-7 gnd Inverse Normalverteilung (DE-588)4162227-3 gnd Signifikanztest (DE-588)4054949-5 gnd Schätzung (DE-588)4193791-0 gnd |
subject_GND | (DE-588)4075494-7 (DE-588)4162227-3 (DE-588)4054949-5 (DE-588)4193791-0 |
title | The Inverse Gaussian Distribution Statistical Theory and Applications |
title_auth | The Inverse Gaussian Distribution Statistical Theory and Applications |
title_exact_search | The Inverse Gaussian Distribution Statistical Theory and Applications |
title_full | The Inverse Gaussian Distribution Statistical Theory and Applications by V. Seshadri |
title_fullStr | The Inverse Gaussian Distribution Statistical Theory and Applications by V. Seshadri |
title_full_unstemmed | The Inverse Gaussian Distribution Statistical Theory and Applications by V. Seshadri |
title_short | The Inverse Gaussian Distribution |
title_sort | the inverse gaussian distribution statistical theory and applications |
title_sub | Statistical Theory and Applications |
topic | Statistics Statistics, general Statistik Normalverteilung (DE-588)4075494-7 gnd Inverse Normalverteilung (DE-588)4162227-3 gnd Signifikanztest (DE-588)4054949-5 gnd Schätzung (DE-588)4193791-0 gnd |
topic_facet | Statistics Statistics, general Statistik Normalverteilung Inverse Normalverteilung Signifikanztest Schätzung |
url | https://doi.org/10.1007/978-1-4612-1456-4 |
work_keys_str_mv | AT seshadriv theinversegaussiandistributionstatisticaltheoryandapplications |