Perturbation Analysis of Optimization Problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2000
|
Schriftenreihe: | Springer Series in Operations Research
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The main subject of this book is perturbation analysis of continuous optimization problems. In the last two decades considerable progress has been made in that area, and it seems that it is time now to present a synthetic view of many important results that apply to various classes of problems. The model problem that is considered throughout the book is of the form (P) Min/(x) subjectto G(x) E K. xeX Here X and Y are Banach spaces, K is a closed convex subset of Y, and / : X -+ IR and G : X -+ Y are called the objective function and the constraint mapping, respectively. We also consider a parameteriZed version (P ) of the above u problem, where the objective function / (x, u) and the constraint mapping G(x, u) are parameterized by a vector u varying in a Banach space U. Our aim is to study continuity and differentiability properties of the optimal value v(u) and the set S(u) of optimal solutions of (P ) viewed as functions of the parameter vector u |
Beschreibung: | 1 Online-Ressource (XVIII, 601 p) |
ISBN: | 9781461213949 9781461271291 |
ISSN: | 1431-8598 |
DOI: | 10.1007/978-1-4612-1394-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419828 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461213949 |c Online |9 978-1-4612-1394-9 | ||
020 | |a 9781461271291 |c Print |9 978-1-4612-7129-1 | ||
024 | 7 | |a 10.1007/978-1-4612-1394-9 |2 doi | |
035 | |a (OCoLC)863905602 | ||
035 | |a (DE-599)BVBBV042419828 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.64 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bonnans, J. Frédéric |e Verfasser |4 aut | |
245 | 1 | 0 | |a Perturbation Analysis of Optimization Problems |c by J. Frédéric Bonnans, Alexander Shapiro |
264 | 1 | |a New York, NY |b Springer New York |c 2000 | |
300 | |a 1 Online-Ressource (XVIII, 601 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Operations Research |x 1431-8598 | |
500 | |a The main subject of this book is perturbation analysis of continuous optimization problems. In the last two decades considerable progress has been made in that area, and it seems that it is time now to present a synthetic view of many important results that apply to various classes of problems. The model problem that is considered throughout the book is of the form (P) Min/(x) subjectto G(x) E K. xeX Here X and Y are Banach spaces, K is a closed convex subset of Y, and / : X -+ IR and G : X -+ Y are called the objective function and the constraint mapping, respectively. We also consider a parameteriZed version (P ) of the above u problem, where the objective function / (x, u) and the constraint mapping G(x, u) are parameterized by a vector u varying in a Banach space U. Our aim is to study continuity and differentiability properties of the optimal value v(u) and the set S(u) of optimal solutions of (P ) viewed as functions of the parameter vector u | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Systems theory | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Calculus of Variations and Optimal Control; Optimization | |
650 | 4 | |a Systems Theory, Control | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Optimierung |0 (DE-588)4043664-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Störungstheorie |0 (DE-588)4128420-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Störungstheorie |0 (DE-588)4128420-3 |D s |
689 | 0 | 1 | |a Optimierung |0 (DE-588)4043664-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Shapiro, Alexander |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1394-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855245 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090941648896 |
---|---|
any_adam_object | |
author | Bonnans, J. Frédéric |
author_facet | Bonnans, J. Frédéric |
author_role | aut |
author_sort | Bonnans, J. Frédéric |
author_variant | j f b jf jfb |
building | Verbundindex |
bvnumber | BV042419828 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863905602 (DE-599)BVBBV042419828 |
dewey-full | 515.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.64 |
dewey-search | 515.64 |
dewey-sort | 3515.64 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1394-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02809nmm a2200517zc 4500</leader><controlfield tag="001">BV042419828</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461213949</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1394-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461271291</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7129-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1394-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863905602</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419828</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.64</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bonnans, J. Frédéric</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Perturbation Analysis of Optimization Problems</subfield><subfield code="c">by J. Frédéric Bonnans, Alexander Shapiro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 601 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Operations Research</subfield><subfield code="x">1431-8598</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The main subject of this book is perturbation analysis of continuous optimization problems. In the last two decades considerable progress has been made in that area, and it seems that it is time now to present a synthetic view of many important results that apply to various classes of problems. The model problem that is considered throughout the book is of the form (P) Min/(x) subjectto G(x) E K. xeX Here X and Y are Banach spaces, K is a closed convex subset of Y, and / : X -+ IR and G : X -+ Y are called the objective function and the constraint mapping, respectively. We also consider a parameteriZed version (P ) of the above u problem, where the objective function / (x, u) and the constraint mapping G(x, u) are parameterized by a vector u varying in a Banach space U. Our aim is to study continuity and differentiability properties of the optimal value v(u) and the set S(u) of optimal solutions of (P ) viewed as functions of the parameter vector u</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculus of Variations and Optimal Control; Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems Theory, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optimierung</subfield><subfield code="0">(DE-588)4043664-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shapiro, Alexander</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1394-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855245</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419828 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461213949 9781461271291 |
issn | 1431-8598 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855245 |
oclc_num | 863905602 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 601 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer New York |
record_format | marc |
series2 | Springer Series in Operations Research |
spelling | Bonnans, J. Frédéric Verfasser aut Perturbation Analysis of Optimization Problems by J. Frédéric Bonnans, Alexander Shapiro New York, NY Springer New York 2000 1 Online-Ressource (XVIII, 601 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Operations Research 1431-8598 The main subject of this book is perturbation analysis of continuous optimization problems. In the last two decades considerable progress has been made in that area, and it seems that it is time now to present a synthetic view of many important results that apply to various classes of problems. The model problem that is considered throughout the book is of the form (P) Min/(x) subjectto G(x) E K. xeX Here X and Y are Banach spaces, K is a closed convex subset of Y, and / : X -+ IR and G : X -+ Y are called the objective function and the constraint mapping, respectively. We also consider a parameteriZed version (P ) of the above u problem, where the objective function / (x, u) and the constraint mapping G(x, u) are parameterized by a vector u varying in a Banach space U. Our aim is to study continuity and differentiability properties of the optimal value v(u) and the set S(u) of optimal solutions of (P ) viewed as functions of the parameter vector u Mathematics Systems theory Mathematical optimization Calculus of Variations and Optimal Control; Optimization Systems Theory, Control Mathematik Optimierung (DE-588)4043664-0 gnd rswk-swf Störungstheorie (DE-588)4128420-3 gnd rswk-swf Störungstheorie (DE-588)4128420-3 s Optimierung (DE-588)4043664-0 s 1\p DE-604 Shapiro, Alexander Sonstige oth https://doi.org/10.1007/978-1-4612-1394-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bonnans, J. Frédéric Perturbation Analysis of Optimization Problems Mathematics Systems theory Mathematical optimization Calculus of Variations and Optimal Control; Optimization Systems Theory, Control Mathematik Optimierung (DE-588)4043664-0 gnd Störungstheorie (DE-588)4128420-3 gnd |
subject_GND | (DE-588)4043664-0 (DE-588)4128420-3 |
title | Perturbation Analysis of Optimization Problems |
title_auth | Perturbation Analysis of Optimization Problems |
title_exact_search | Perturbation Analysis of Optimization Problems |
title_full | Perturbation Analysis of Optimization Problems by J. Frédéric Bonnans, Alexander Shapiro |
title_fullStr | Perturbation Analysis of Optimization Problems by J. Frédéric Bonnans, Alexander Shapiro |
title_full_unstemmed | Perturbation Analysis of Optimization Problems by J. Frédéric Bonnans, Alexander Shapiro |
title_short | Perturbation Analysis of Optimization Problems |
title_sort | perturbation analysis of optimization problems |
topic | Mathematics Systems theory Mathematical optimization Calculus of Variations and Optimal Control; Optimization Systems Theory, Control Mathematik Optimierung (DE-588)4043664-0 gnd Störungstheorie (DE-588)4128420-3 gnd |
topic_facet | Mathematics Systems theory Mathematical optimization Calculus of Variations and Optimal Control; Optimization Systems Theory, Control Mathematik Optimierung Störungstheorie |
url | https://doi.org/10.1007/978-1-4612-1394-9 |
work_keys_str_mv | AT bonnansjfrederic perturbationanalysisofoptimizationproblems AT shapiroalexander perturbationanalysisofoptimizationproblems |