Linear and Nonlinear Aspects of Vortices: The Ginzburg-andau Model
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2000
|
Schriftenreihe: | Progress in Nonlinear Differential Equations and Their Applications
39 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Equations of the Ginzburg–Landau vortices have particular applications to a number of problems in physics, including phase transition phenomena in superconductors, superfluids, and liquid crystals. Building on the results presented by Bethuel, Brazis, and Helein, this current work further analyzes Ginzburg-Landau vortices with a particular emphasis on the uniqueness question. The authors begin with a general presentation of the theory and then proceed to study problems using weighted Hölder spaces and Sobolev Spaces. These are particularly powerful tools and help us obtain a deeper understanding of the nonlinear partial differential equations associated with Ginzburg-Landau vortices. Such an approach sheds new light on the links between the geometry of vortices and the number of solutions. Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful in a number of contexts in the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and will serve as an excellent classroom text or a valuable self-study resource |
Beschreibung: | 1 Online-Ressource (X, 342 p) |
ISBN: | 9781461213864 9781461271253 |
DOI: | 10.1007/978-1-4612-1386-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419825 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461213864 |c Online |9 978-1-4612-1386-4 | ||
020 | |a 9781461271253 |c Print |9 978-1-4612-7125-3 | ||
024 | 7 | |a 10.1007/978-1-4612-1386-4 |2 doi | |
035 | |a (OCoLC)863764909 | ||
035 | |a (DE-599)BVBBV042419825 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Pacard, Frank |e Verfasser |4 aut | |
245 | 1 | 0 | |a Linear and Nonlinear Aspects of Vortices |b The Ginzburg-andau Model |c by Frank Pacard, Tristan Rivière |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2000 | |
300 | |a 1 Online-Ressource (X, 342 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Nonlinear Differential Equations and Their Applications |v 39 | |
500 | |a Equations of the Ginzburg–Landau vortices have particular applications to a number of problems in physics, including phase transition phenomena in superconductors, superfluids, and liquid crystals. Building on the results presented by Bethuel, Brazis, and Helein, this current work further analyzes Ginzburg-Landau vortices with a particular emphasis on the uniqueness question. The authors begin with a general presentation of the theory and then proceed to study problems using weighted Hölder spaces and Sobolev Spaces. These are particularly powerful tools and help us obtain a deeper understanding of the nonlinear partial differential equations associated with Ginzburg-Landau vortices. Such an approach sheds new light on the links between the geometry of vortices and the number of solutions. Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful in a number of contexts in the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and will serve as an excellent classroom text or a valuable self-study resource | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Rivière, Tristan |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1386-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855242 |
Datensatz im Suchindex
_version_ | 1804153090933260288 |
---|---|
any_adam_object | |
author | Pacard, Frank |
author_facet | Pacard, Frank |
author_role | aut |
author_sort | Pacard, Frank |
author_variant | f p fp |
building | Verbundindex |
bvnumber | BV042419825 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863764909 (DE-599)BVBBV042419825 |
dewey-full | 515.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.7 |
dewey-search | 515.7 |
dewey-sort | 3515.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1386-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02769nmm a2200469zcb4500</leader><controlfield tag="001">BV042419825</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461213864</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1386-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461271253</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7125-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1386-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863764909</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419825</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pacard, Frank</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear and Nonlinear Aspects of Vortices</subfield><subfield code="b">The Ginzburg-andau Model</subfield><subfield code="c">by Frank Pacard, Tristan Rivière</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 342 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">39</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Equations of the Ginzburg–Landau vortices have particular applications to a number of problems in physics, including phase transition phenomena in superconductors, superfluids, and liquid crystals. Building on the results presented by Bethuel, Brazis, and Helein, this current work further analyzes Ginzburg-Landau vortices with a particular emphasis on the uniqueness question. The authors begin with a general presentation of the theory and then proceed to study problems using weighted Hölder spaces and Sobolev Spaces. These are particularly powerful tools and help us obtain a deeper understanding of the nonlinear partial differential equations associated with Ginzburg-Landau vortices. Such an approach sheds new light on the links between the geometry of vortices and the number of solutions. Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful in a number of contexts in the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and will serve as an excellent classroom text or a valuable self-study resource</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rivière, Tristan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1386-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855242</subfield></datafield></record></collection> |
id | DE-604.BV042419825 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461213864 9781461271253 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855242 |
oclc_num | 863764909 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 342 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Nonlinear Differential Equations and Their Applications |
spelling | Pacard, Frank Verfasser aut Linear and Nonlinear Aspects of Vortices The Ginzburg-andau Model by Frank Pacard, Tristan Rivière Boston, MA Birkhäuser Boston 2000 1 Online-Ressource (X, 342 p) txt rdacontent c rdamedia cr rdacarrier Progress in Nonlinear Differential Equations and Their Applications 39 Equations of the Ginzburg–Landau vortices have particular applications to a number of problems in physics, including phase transition phenomena in superconductors, superfluids, and liquid crystals. Building on the results presented by Bethuel, Brazis, and Helein, this current work further analyzes Ginzburg-Landau vortices with a particular emphasis on the uniqueness question. The authors begin with a general presentation of the theory and then proceed to study problems using weighted Hölder spaces and Sobolev Spaces. These are particularly powerful tools and help us obtain a deeper understanding of the nonlinear partial differential equations associated with Ginzburg-Landau vortices. Such an approach sheds new light on the links between the geometry of vortices and the number of solutions. Aimed at mathematicians, physicists, engineers, and grad students, this monograph will be useful in a number of contexts in the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and will serve as an excellent classroom text or a valuable self-study resource Mathematics Functional analysis Differential equations, partial Functional Analysis Partial Differential Equations Applications of Mathematics Theoretical, Mathematical and Computational Physics Mathematik Rivière, Tristan Sonstige oth https://doi.org/10.1007/978-1-4612-1386-4 Verlag Volltext |
spellingShingle | Pacard, Frank Linear and Nonlinear Aspects of Vortices The Ginzburg-andau Model Mathematics Functional analysis Differential equations, partial Functional Analysis Partial Differential Equations Applications of Mathematics Theoretical, Mathematical and Computational Physics Mathematik |
title | Linear and Nonlinear Aspects of Vortices The Ginzburg-andau Model |
title_auth | Linear and Nonlinear Aspects of Vortices The Ginzburg-andau Model |
title_exact_search | Linear and Nonlinear Aspects of Vortices The Ginzburg-andau Model |
title_full | Linear and Nonlinear Aspects of Vortices The Ginzburg-andau Model by Frank Pacard, Tristan Rivière |
title_fullStr | Linear and Nonlinear Aspects of Vortices The Ginzburg-andau Model by Frank Pacard, Tristan Rivière |
title_full_unstemmed | Linear and Nonlinear Aspects of Vortices The Ginzburg-andau Model by Frank Pacard, Tristan Rivière |
title_short | Linear and Nonlinear Aspects of Vortices |
title_sort | linear and nonlinear aspects of vortices the ginzburg andau model |
title_sub | The Ginzburg-andau Model |
topic | Mathematics Functional analysis Differential equations, partial Functional Analysis Partial Differential Equations Applications of Mathematics Theoretical, Mathematical and Computational Physics Mathematik |
topic_facet | Mathematics Functional analysis Differential equations, partial Functional Analysis Partial Differential Equations Applications of Mathematics Theoretical, Mathematical and Computational Physics Mathematik |
url | https://doi.org/10.1007/978-1-4612-1386-4 |
work_keys_str_mv | AT pacardfrank linearandnonlinearaspectsofvorticestheginzburgandaumodel AT rivieretristan linearandnonlinearaspectsofvorticestheginzburgandaumodel |