Analysis and Geometry on Complex Homogeneous Domains:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2000
|
Schriftenreihe: | Progress in Mathematics
185 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts |
Beschreibung: | 1 Online-Ressource (XVII, 540 p) |
ISBN: | 9781461213666 9781461271154 |
DOI: | 10.1007/978-1-4612-1366-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419815 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461213666 |c Online |9 978-1-4612-1366-6 | ||
020 | |a 9781461271154 |c Print |9 978-1-4612-7115-4 | ||
024 | 7 | |a 10.1007/978-1-4612-1366-6 |2 doi | |
035 | |a (OCoLC)879624721 | ||
035 | |a (DE-599)BVBBV042419815 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.482 |2 23 | |
082 | 0 | |a 512.55 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Faraut, Jacques |e Verfasser |4 aut | |
245 | 1 | 0 | |a Analysis and Geometry on Complex Homogeneous Domains |c by Jacques Faraut, Soji Kaneyuki, Adam Korányi, Qi-keng Lu, Guy Roos |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2000 | |
300 | |a 1 Online-Ressource (XVII, 540 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 185 | |
500 | |a A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Several Complex Variables and Analytic Spaces | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Homogene komplexe Mannigfaltigkeit |0 (DE-588)4320782-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Homogene komplexe Mannigfaltigkeit |0 (DE-588)4320782-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kaneyuki, Soji |e Sonstige |4 oth | |
700 | 1 | |a Korányi, Adam |e Sonstige |4 oth | |
700 | 1 | |a Lu, Qi-keng |e Sonstige |4 oth | |
700 | 1 | |a Roos, Guy |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1366-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855232 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090925920256 |
---|---|
any_adam_object | |
author | Faraut, Jacques |
author_facet | Faraut, Jacques |
author_role | aut |
author_sort | Faraut, Jacques |
author_variant | j f jf |
building | Verbundindex |
bvnumber | BV042419815 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624721 (DE-599)BVBBV042419815 |
dewey-full | 512.482 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.482 512.55 |
dewey-search | 512.482 512.55 |
dewey-sort | 3512.482 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1366-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03694nmm a2200577zcb4500</leader><controlfield tag="001">BV042419815</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461213666</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1366-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461271154</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7115-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1366-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624721</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419815</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.55</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faraut, Jacques</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis and Geometry on Complex Homogeneous Domains</subfield><subfield code="c">by Jacques Faraut, Soji Kaneyuki, Adam Korányi, Qi-keng Lu, Guy Roos</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 540 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">185</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Several Complex Variables and Analytic Spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homogene komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4320782-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Homogene komplexe Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4320782-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaneyuki, Soji</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korányi, Adam</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Qi-keng</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roos, Guy</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1366-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855232</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419815 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461213666 9781461271154 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855232 |
oclc_num | 879624721 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 540 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Faraut, Jacques Verfasser aut Analysis and Geometry on Complex Homogeneous Domains by Jacques Faraut, Soji Kaneyuki, Adam Korányi, Qi-keng Lu, Guy Roos Boston, MA Birkhäuser Boston 2000 1 Online-Ressource (XVII, 540 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 185 A number of important topics in complex analysis and geometry are covered in this excellent introductory text. Written by experts in the subject, each chapter unfolds from the basics to the more complex. The exposition is rapid-paced and efficient, without compromising proofs and examples that enable the reader to grasp the essentials. The most basic type of domain examined is the bounded symmetric domain, originally described and classified by Cartan and Harish- Chandra. Two of the five parts of the text deal with these domains: one introduces the subject through the theory of semisimple Lie algebras (Koranyi), and the other through Jordan algebras and triple systems (Roos). Larger classes of domains and spaces are furnished by the pseudo-Hermitian symmetric spaces and related R-spaces. These classes are covered via a study of their geometry and a presentation and classification of their Lie algebraic theory (Kaneyuki). In the fourth part of the book, the heat kernels of the symmetric spaces belonging to the classical Lie groups are determined (Lu). Explicit computations are made for each case, giving precise results and complementing the more abstract and general methods presented. Also explored are recent developments in the field, in particular, the study of complex semigroups which generalize complex tube domains and function spaces on them (Faraut). This volume will be useful as a graduate text for students of Lie group theory with connections to complex analysis, or as a self-study resource for newcomers to the field. Readers will reach the frontiers of the subject in a considerably shorter time than with existing texts Mathematics Algebra Topological Groups Differential equations, partial Global differential geometry Topological Groups, Lie Groups Several Complex Variables and Analytic Spaces Differential Geometry Mathematik Homogene komplexe Mannigfaltigkeit (DE-588)4320782-0 gnd rswk-swf Homogene komplexe Mannigfaltigkeit (DE-588)4320782-0 s 1\p DE-604 Kaneyuki, Soji Sonstige oth Korányi, Adam Sonstige oth Lu, Qi-keng Sonstige oth Roos, Guy Sonstige oth https://doi.org/10.1007/978-1-4612-1366-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Faraut, Jacques Analysis and Geometry on Complex Homogeneous Domains Mathematics Algebra Topological Groups Differential equations, partial Global differential geometry Topological Groups, Lie Groups Several Complex Variables and Analytic Spaces Differential Geometry Mathematik Homogene komplexe Mannigfaltigkeit (DE-588)4320782-0 gnd |
subject_GND | (DE-588)4320782-0 |
title | Analysis and Geometry on Complex Homogeneous Domains |
title_auth | Analysis and Geometry on Complex Homogeneous Domains |
title_exact_search | Analysis and Geometry on Complex Homogeneous Domains |
title_full | Analysis and Geometry on Complex Homogeneous Domains by Jacques Faraut, Soji Kaneyuki, Adam Korányi, Qi-keng Lu, Guy Roos |
title_fullStr | Analysis and Geometry on Complex Homogeneous Domains by Jacques Faraut, Soji Kaneyuki, Adam Korányi, Qi-keng Lu, Guy Roos |
title_full_unstemmed | Analysis and Geometry on Complex Homogeneous Domains by Jacques Faraut, Soji Kaneyuki, Adam Korányi, Qi-keng Lu, Guy Roos |
title_short | Analysis and Geometry on Complex Homogeneous Domains |
title_sort | analysis and geometry on complex homogeneous domains |
topic | Mathematics Algebra Topological Groups Differential equations, partial Global differential geometry Topological Groups, Lie Groups Several Complex Variables and Analytic Spaces Differential Geometry Mathematik Homogene komplexe Mannigfaltigkeit (DE-588)4320782-0 gnd |
topic_facet | Mathematics Algebra Topological Groups Differential equations, partial Global differential geometry Topological Groups, Lie Groups Several Complex Variables and Analytic Spaces Differential Geometry Mathematik Homogene komplexe Mannigfaltigkeit |
url | https://doi.org/10.1007/978-1-4612-1366-6 |
work_keys_str_mv | AT farautjacques analysisandgeometryoncomplexhomogeneousdomains AT kaneyukisoji analysisandgeometryoncomplexhomogeneousdomains AT koranyiadam analysisandgeometryoncomplexhomogeneousdomains AT luqikeng analysisandgeometryoncomplexhomogeneousdomains AT roosguy analysisandgeometryoncomplexhomogeneousdomains |