The Analysis of Variance: Fixed, Random and Mixed Models
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2000
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The analysis of variance (ANOYA) models have become one of the most widely used tools of modern statistics for analyzing multifactor data. The ANOYA models provide versatile statistical tools for studying the relationship between a dependent variable and one or more independent variables. The ANOYA models are employed to determine whether different variables interact and which factors or factor combinations are most important. They are appealing because they provide a conceptually simple technique for investigating statistical relationships among different independent variables known as factors. Currently there are several texts and monographs available on the subject. However, some of them such as those of Scheffe (1959) and Fisher and McDonald (1978), are written for mathematically advanced readers, requiring a good background in calculus, matrix algebra, and statistical theory; whereas others such as Guenther (1964), Huitson (1971), and Dunn and Clark (1987), although they assume only a background in elementary algebra and statistics, treat the subject somewhat scantily and provide only a superficial discussion of the random and mixed effects analysis of variance |
Beschreibung: | 1 Online-Ressource (XXXV, 742 p) |
ISBN: | 9781461213444 9781461271048 |
DOI: | 10.1007/978-1-4612-1344-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419808 | ||
003 | DE-604 | ||
005 | 20180115 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461213444 |c Online |9 978-1-4612-1344-4 | ||
020 | |a 9781461271048 |c Print |9 978-1-4612-7104-8 | ||
024 | 7 | |a 10.1007/978-1-4612-1344-4 |2 doi | |
035 | |a (OCoLC)906692325 | ||
035 | |a (DE-599)BVBBV042419808 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Sahai, Hardeo |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Analysis of Variance |b Fixed, Random and Mixed Models |c by Hardeo Sahai, Mohammed I. Ageel |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2000 | |
300 | |a 1 Online-Ressource (XXXV, 742 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a The analysis of variance (ANOYA) models have become one of the most widely used tools of modern statistics for analyzing multifactor data. The ANOYA models provide versatile statistical tools for studying the relationship between a dependent variable and one or more independent variables. The ANOYA models are employed to determine whether different variables interact and which factors or factor combinations are most important. They are appealing because they provide a conceptually simple technique for investigating statistical relationships among different independent variables known as factors. Currently there are several texts and monographs available on the subject. However, some of them such as those of Scheffe (1959) and Fisher and McDonald (1978), are written for mathematically advanced readers, requiring a good background in calculus, matrix algebra, and statistical theory; whereas others such as Guenther (1964), Huitson (1971), and Dunn and Clark (1987), although they assume only a background in elementary algebra and statistics, treat the subject somewhat scantily and provide only a superficial discussion of the random and mixed effects analysis of variance | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Statistical Theory and Methods | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Varianzanalyse |0 (DE-588)4187413-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Varianzanalyse |0 (DE-588)4187413-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Ageel, Mohammed I. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1344-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855225 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090890268672 |
---|---|
any_adam_object | |
author | Sahai, Hardeo |
author_facet | Sahai, Hardeo |
author_role | aut |
author_sort | Sahai, Hardeo |
author_variant | h s hs |
building | Verbundindex |
bvnumber | BV042419808 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)906692325 (DE-599)BVBBV042419808 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1344-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02924nmm a2200505zc 4500</leader><controlfield tag="001">BV042419808</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180115 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461213444</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1344-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461271048</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7104-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1344-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)906692325</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419808</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sahai, Hardeo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Analysis of Variance</subfield><subfield code="b">Fixed, Random and Mixed Models</subfield><subfield code="c">by Hardeo Sahai, Mohammed I. Ageel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXXV, 742 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The analysis of variance (ANOYA) models have become one of the most widely used tools of modern statistics for analyzing multifactor data. The ANOYA models provide versatile statistical tools for studying the relationship between a dependent variable and one or more independent variables. The ANOYA models are employed to determine whether different variables interact and which factors or factor combinations are most important. They are appealing because they provide a conceptually simple technique for investigating statistical relationships among different independent variables known as factors. Currently there are several texts and monographs available on the subject. However, some of them such as those of Scheffe (1959) and Fisher and McDonald (1978), are written for mathematically advanced readers, requiring a good background in calculus, matrix algebra, and statistical theory; whereas others such as Guenther (1964), Huitson (1971), and Dunn and Clark (1987), although they assume only a background in elementary algebra and statistics, treat the subject somewhat scantily and provide only a superficial discussion of the random and mixed effects analysis of variance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical Theory and Methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Varianzanalyse</subfield><subfield code="0">(DE-588)4187413-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Varianzanalyse</subfield><subfield code="0">(DE-588)4187413-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ageel, Mohammed I.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1344-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855225</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419808 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461213444 9781461271048 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855225 |
oclc_num | 906692325 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXXV, 742 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Sahai, Hardeo Verfasser aut The Analysis of Variance Fixed, Random and Mixed Models by Hardeo Sahai, Mohammed I. Ageel Boston, MA Birkhäuser Boston 2000 1 Online-Ressource (XXXV, 742 p) txt rdacontent c rdamedia cr rdacarrier The analysis of variance (ANOYA) models have become one of the most widely used tools of modern statistics for analyzing multifactor data. The ANOYA models provide versatile statistical tools for studying the relationship between a dependent variable and one or more independent variables. The ANOYA models are employed to determine whether different variables interact and which factors or factor combinations are most important. They are appealing because they provide a conceptually simple technique for investigating statistical relationships among different independent variables known as factors. Currently there are several texts and monographs available on the subject. However, some of them such as those of Scheffe (1959) and Fisher and McDonald (1978), are written for mathematically advanced readers, requiring a good background in calculus, matrix algebra, and statistical theory; whereas others such as Guenther (1964), Huitson (1971), and Dunn and Clark (1987), although they assume only a background in elementary algebra and statistics, treat the subject somewhat scantily and provide only a superficial discussion of the random and mixed effects analysis of variance Mathematics Global analysis (Mathematics) Distribution (Probability theory) Mathematical statistics Probability Theory and Stochastic Processes Statistical Theory and Methods Analysis Mathematik Varianzanalyse (DE-588)4187413-4 gnd rswk-swf Varianzanalyse (DE-588)4187413-4 s 1\p DE-604 Ageel, Mohammed I. Sonstige oth https://doi.org/10.1007/978-1-4612-1344-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sahai, Hardeo The Analysis of Variance Fixed, Random and Mixed Models Mathematics Global analysis (Mathematics) Distribution (Probability theory) Mathematical statistics Probability Theory and Stochastic Processes Statistical Theory and Methods Analysis Mathematik Varianzanalyse (DE-588)4187413-4 gnd |
subject_GND | (DE-588)4187413-4 |
title | The Analysis of Variance Fixed, Random and Mixed Models |
title_auth | The Analysis of Variance Fixed, Random and Mixed Models |
title_exact_search | The Analysis of Variance Fixed, Random and Mixed Models |
title_full | The Analysis of Variance Fixed, Random and Mixed Models by Hardeo Sahai, Mohammed I. Ageel |
title_fullStr | The Analysis of Variance Fixed, Random and Mixed Models by Hardeo Sahai, Mohammed I. Ageel |
title_full_unstemmed | The Analysis of Variance Fixed, Random and Mixed Models by Hardeo Sahai, Mohammed I. Ageel |
title_short | The Analysis of Variance |
title_sort | the analysis of variance fixed random and mixed models |
title_sub | Fixed, Random and Mixed Models |
topic | Mathematics Global analysis (Mathematics) Distribution (Probability theory) Mathematical statistics Probability Theory and Stochastic Processes Statistical Theory and Methods Analysis Mathematik Varianzanalyse (DE-588)4187413-4 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Distribution (Probability theory) Mathematical statistics Probability Theory and Stochastic Processes Statistical Theory and Methods Analysis Mathematik Varianzanalyse |
url | https://doi.org/10.1007/978-1-4612-1344-4 |
work_keys_str_mv | AT sahaihardeo theanalysisofvariancefixedrandomandmixedmodels AT ageelmohammedi theanalysisofvariancefixedrandomandmixedmodels |