Interpolating Cubic Splines:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2000
|
Schriftenreihe: | Progress in Computer Science and Applied Logic
18 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline functions, and splines are used in numerical analysis and statistics. Thus the construction of movies and computer games trav els side-by-side with the art of automobile design, sail construction, and architecture; and statisticians and applied mathematicians use splines as everyday computational tools, often divorced from graphic images |
Beschreibung: | 1 Online-Ressource (XII, 244 p) |
ISBN: | 9781461213208 9781461270928 |
DOI: | 10.1007/978-1-4612-1320-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419801 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781461213208 |c Online |9 978-1-4612-1320-8 | ||
020 | |a 9781461270928 |c Print |9 978-1-4612-7092-8 | ||
024 | 7 | |a 10.1007/978-1-4612-1320-8 |2 doi | |
035 | |a (OCoLC)863764992 | ||
035 | |a (DE-599)BVBBV042419801 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 004.0151 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Knott, Gary D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Interpolating Cubic Splines |c by Gary D. Knott |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2000 | |
300 | |a 1 Online-Ressource (XII, 244 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Computer Science and Applied Logic |v 18 | |
500 | |a A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline functions, and splines are used in numerical analysis and statistics. Thus the construction of movies and computer games trav els side-by-side with the art of automobile design, sail construction, and architecture; and statisticians and applied mathematicians use splines as everyday computational tools, often divorced from graphic images | ||
650 | 4 | |a Computer science | |
650 | 4 | |a Computer aided design | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Computer Science | |
650 | 4 | |a Math Applications in Computer Science | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Computer-Aided Engineering (CAD, CAE) and Design | |
650 | 4 | |a Computer Applications | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kubische Form |0 (DE-588)4569782-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spline-Interpolation |0 (DE-588)4182396-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spline-Interpolation |0 (DE-588)4182396-5 |D s |
689 | 0 | 1 | |a Kubische Form |0 (DE-588)4569782-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1320-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855218 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090886074368 |
---|---|
any_adam_object | |
author | Knott, Gary D. |
author_facet | Knott, Gary D. |
author_role | aut |
author_sort | Knott, Gary D. |
author_variant | g d k gd gdk |
building | Verbundindex |
bvnumber | BV042419801 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863764992 (DE-599)BVBBV042419801 |
dewey-full | 004.0151 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.0151 |
dewey-search | 004.0151 |
dewey-sort | 14.0151 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-4612-1320-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03364nmm a2200577zcb4500</leader><controlfield tag="001">BV042419801</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461213208</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1320-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461270928</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-7092-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1320-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863764992</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419801</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.0151</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knott, Gary D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interpolating Cubic Splines</subfield><subfield code="c">by Gary D. Knott</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 244 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Computer Science and Applied Logic</subfield><subfield code="v">18</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline functions, and splines are used in numerical analysis and statistics. Thus the construction of movies and computer games trav els side-by-side with the art of automobile design, sail construction, and architecture; and statisticians and applied mathematicians use splines as everyday computational tools, often divorced from graphic images</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer aided design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Math Applications in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer-Aided Engineering (CAD, CAE) and Design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kubische Form</subfield><subfield code="0">(DE-588)4569782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline-Interpolation</subfield><subfield code="0">(DE-588)4182396-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spline-Interpolation</subfield><subfield code="0">(DE-588)4182396-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kubische Form</subfield><subfield code="0">(DE-588)4569782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1320-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855218</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419801 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461213208 9781461270928 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855218 |
oclc_num | 863764992 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 244 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Computer Science and Applied Logic |
spelling | Knott, Gary D. Verfasser aut Interpolating Cubic Splines by Gary D. Knott Boston, MA Birkhäuser Boston 2000 1 Online-Ressource (XII, 244 p) txt rdacontent c rdamedia cr rdacarrier Progress in Computer Science and Applied Logic 18 A spline is a thin flexible strip composed of a material such as bamboo or steel that can be bent to pass through or near given points in the plane, or in 3-space in a smooth manner. Mechanical engineers and drafting specialists find such (physical) splines useful in designing and in drawing plans for a wide variety of objects, such as for hulls of boats or for the bodies of automobiles where smooth curves need to be specified. These days, physi cal splines are largely replaced by computer software that can compute the desired curves (with appropriate encouragment). The same mathematical ideas used for computing "spline" curves can be extended to allow us to compute "spline" surfaces. The application ofthese mathematical ideas is rather widespread. Spline functions are central to computer graphics disciplines. Spline curves and surfaces are used in computer graphics renderings for both real and imagi nary objects. Computer-aided-design (CAD) systems depend on algorithms for computing spline functions, and splines are used in numerical analysis and statistics. Thus the construction of movies and computer games trav els side-by-side with the art of automobile design, sail construction, and architecture; and statisticians and applied mathematicians use splines as everyday computational tools, often divorced from graphic images Computer science Computer aided design Mathematics Computer science / Mathematics Computer Science Math Applications in Computer Science Computational Mathematics and Numerical Analysis Applications of Mathematics Computer-Aided Engineering (CAD, CAE) and Design Computer Applications Informatik Mathematik Kubische Form (DE-588)4569782-6 gnd rswk-swf Spline-Interpolation (DE-588)4182396-5 gnd rswk-swf Spline-Interpolation (DE-588)4182396-5 s Kubische Form (DE-588)4569782-6 s 1\p DE-604 https://doi.org/10.1007/978-1-4612-1320-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Knott, Gary D. Interpolating Cubic Splines Computer science Computer aided design Mathematics Computer science / Mathematics Computer Science Math Applications in Computer Science Computational Mathematics and Numerical Analysis Applications of Mathematics Computer-Aided Engineering (CAD, CAE) and Design Computer Applications Informatik Mathematik Kubische Form (DE-588)4569782-6 gnd Spline-Interpolation (DE-588)4182396-5 gnd |
subject_GND | (DE-588)4569782-6 (DE-588)4182396-5 |
title | Interpolating Cubic Splines |
title_auth | Interpolating Cubic Splines |
title_exact_search | Interpolating Cubic Splines |
title_full | Interpolating Cubic Splines by Gary D. Knott |
title_fullStr | Interpolating Cubic Splines by Gary D. Knott |
title_full_unstemmed | Interpolating Cubic Splines by Gary D. Knott |
title_short | Interpolating Cubic Splines |
title_sort | interpolating cubic splines |
topic | Computer science Computer aided design Mathematics Computer science / Mathematics Computer Science Math Applications in Computer Science Computational Mathematics and Numerical Analysis Applications of Mathematics Computer-Aided Engineering (CAD, CAE) and Design Computer Applications Informatik Mathematik Kubische Form (DE-588)4569782-6 gnd Spline-Interpolation (DE-588)4182396-5 gnd |
topic_facet | Computer science Computer aided design Mathematics Computer science / Mathematics Computer Science Math Applications in Computer Science Computational Mathematics and Numerical Analysis Applications of Mathematics Computer-Aided Engineering (CAD, CAE) and Design Computer Applications Informatik Mathematik Kubische Form Spline-Interpolation |
url | https://doi.org/10.1007/978-1-4612-1320-8 |
work_keys_str_mv | AT knottgaryd interpolatingcubicsplines |