Gaussian and Non-Gaussian Linear Time Series and Random Fields:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rosenblatt, Murray (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: New York, NY Springer New York 2000
Schriftenreihe:Springer Series in Statistics
Schlagworte:
Online-Zugang:Volltext
Beschreibung:Much of this book is concerned with autoregressive and moving average linear stationary sequences and random fields. These models are part of the classical literature in time series analysis, particularly in the Gaussian case. There is a large literature on probabilistic and statistical aspects of these models- to a great extent in the Gaussian context. In the Gaussian case best predictors are linear and there is an extensive study of the asymptotics of asymptotically optimal estimators. Some discussion of these classical results is given to provide a contrast with what may occur in the non-Gaussian case. There the prediction problem may be nonlinear and problems of estimation can have a certain complexity due to the richer structure that non-Gaussian models may have. Gaussian stationary sequences have a reversible probability structure, that is, the probability structure with time increasing in the usual manner is the same as that with time reversed. Chapter 1 considers the question of reversibility for linear stationary sequences and gives necessary and sufficient conditions for the reversibility. A neat result of Breidt and Davis on reversibility is presented. A simple but elegant result of Cheng is also given that specifies conditions for the identifiability of the filter coefficients that specify a linear non-Gaussian random field
Beschreibung:1 Online-Ressource (XIII, 247 p)
ISBN:9781461212621
9781461270676
ISSN:0172-7397
DOI:10.1007/978-1-4612-1262-1

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen