Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1984
|
Schriftenreihe: | Applied Mathematical Sciences
53 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Conservation laws arise from the modeling of physical processes through the following three steps: 1) The appropriate physical balance laws are derived for m-phy- t cal quantities, ul""'~ with u = (ul' ... ,u ) and u(x,t) defined m for x = (xl""'~) E RN (N = 1,2, or 3), t > 0 and with the values m u(x,t) lying in an open subset, G, of R , the state space. The state space G arises because physical quantities such as the density or total energy should always be positive; thus the values of u are often con strained to an open set G. 2) The flux functions appearing in these balance laws are idealized through prescribed nonlinear functions, F.(u), mapping G into J j = 1, ..• ,N while source terms are defined by S(u,x,t) with S a given smooth function of these arguments with values in Rm. In parti- lar, the detailed microscopic effects of diffusion and dissipation are ignored. 3) A generalized version of the principle of virtual work is applied (see Antman [1]). The formal result of applying the three steps (1)-(3) is that the m physical quantities u define a weak solution of an m x m system of conservation laws, o I + N(Wt'u + r W ·F.(u) + W·S(u,x,t))dxdt (1.1) R xR j=l Xj J for all W E C~(RN x R+), W(x,t) E Rm |
Beschreibung: | 1 Online-Ressource (172p) |
ISBN: | 9781461211167 9780387960371 |
ISSN: | 0066-5452 |
DOI: | 10.1007/978-1-4612-1116-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419752 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1984 |||| o||u| ||||||eng d | ||
020 | |a 9781461211167 |c Online |9 978-1-4612-1116-7 | ||
020 | |a 9780387960371 |c Print |9 978-0-387-96037-1 | ||
024 | 7 | |a 10.1007/978-1-4612-1116-7 |2 doi | |
035 | |a (OCoLC)863768406 | ||
035 | |a (DE-599)BVBBV042419752 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Majda, A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables |c by A. Majda |
264 | 1 | |a New York, NY |b Springer New York |c 1984 | |
300 | |a 1 Online-Ressource (172p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied Mathematical Sciences |v 53 |x 0066-5452 | |
500 | |a Conservation laws arise from the modeling of physical processes through the following three steps: 1) The appropriate physical balance laws are derived for m-phy- t cal quantities, ul""'~ with u = (ul' ... ,u ) and u(x,t) defined m for x = (xl""'~) E RN (N = 1,2, or 3), t > 0 and with the values m u(x,t) lying in an open subset, G, of R , the state space. The state space G arises because physical quantities such as the density or total energy should always be positive; thus the values of u are often con strained to an open set G. 2) The flux functions appearing in these balance laws are idealized through prescribed nonlinear functions, F.(u), mapping G into J j = 1, ..• ,N while source terms are defined by S(u,x,t) with S a given smooth function of these arguments with values in Rm. In parti- lar, the detailed microscopic effects of diffusion and dissipation are ignored. 3) A generalized version of the principle of virtual work is applied (see Antman [1]). The formal result of applying the three steps (1)-(3) is that the m physical quantities u define a weak solution of an m x m system of conservation laws, o I + N(Wt'u + r W ·F.(u) + W·S(u,x,t))dxdt (1.1) R xR j=l Xj J for all W E C~(RN x R+), W(x,t) E Rm | ||
650 | 4 | |a Physics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 0 | 7 | |a Gasdynamik |0 (DE-588)4019339-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kompressible Strömung |0 (DE-588)4032018-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kompressibilität |0 (DE-588)4199865-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hydrodynamik |0 (DE-588)4026302-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erhaltungssatz |0 (DE-588)4131214-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolisches System |0 (DE-588)4191897-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Methode |0 (DE-588)4155620-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hydrodynamik |0 (DE-588)4026302-2 |D s |
689 | 0 | 1 | |a Kompressibilität |0 (DE-588)4199865-0 |D s |
689 | 0 | 2 | |a Mathematische Methode |0 (DE-588)4155620-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Kompressible Strömung |0 (DE-588)4032018-2 |D s |
689 | 1 | 1 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 1 | 2 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Hyperbolisches System |0 (DE-588)4191897-6 |D s |
689 | 2 | 1 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 3 | 1 | |a Gasdynamik |0 (DE-588)4019339-1 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1116-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855169 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090758148096 |
---|---|
any_adam_object | |
author | Majda, A. |
author_facet | Majda, A. |
author_role | aut |
author_sort | Majda, A. |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV042419752 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863768406 (DE-599)BVBBV042419752 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-1-4612-1116-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04110nmm a2200709zcb4500</leader><controlfield tag="001">BV042419752</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1984 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461211167</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1116-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387960371</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-96037-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1116-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863768406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419752</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Majda, A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables</subfield><subfield code="c">by A. Majda</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (172p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">53</subfield><subfield code="x">0066-5452</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Conservation laws arise from the modeling of physical processes through the following three steps: 1) The appropriate physical balance laws are derived for m-phy- t cal quantities, ul""'~ with u = (ul' ... ,u ) and u(x,t) defined m for x = (xl""'~) E RN (N = 1,2, or 3), t > 0 and with the values m u(x,t) lying in an open subset, G, of R , the state space. The state space G arises because physical quantities such as the density or total energy should always be positive; thus the values of u are often con strained to an open set G. 2) The flux functions appearing in these balance laws are idealized through prescribed nonlinear functions, F.(u), mapping G into J j = 1, ..• ,N while source terms are defined by S(u,x,t) with S a given smooth function of these arguments with values in Rm. In parti- lar, the detailed microscopic effects of diffusion and dissipation are ignored. 3) A generalized version of the principle of virtual work is applied (see Antman [1]). The formal result of applying the three steps (1)-(3) is that the m physical quantities u define a weak solution of an m x m system of conservation laws, o I + N(Wt'u + r W ·F.(u) + W·S(u,x,t))dxdt (1.1) R xR j=l Xj J for all W E C~(RN x R+), W(x,t) E Rm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gasdynamik</subfield><subfield code="0">(DE-588)4019339-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompressible Strömung</subfield><subfield code="0">(DE-588)4032018-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompressibilität</subfield><subfield code="0">(DE-588)4199865-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kompressibilität</subfield><subfield code="0">(DE-588)4199865-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kompressible Strömung</subfield><subfield code="0">(DE-588)4032018-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Gasdynamik</subfield><subfield code="0">(DE-588)4019339-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1116-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855169</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419752 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461211167 9780387960371 |
issn | 0066-5452 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855169 |
oclc_num | 863768406 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (172p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Springer New York |
record_format | marc |
series2 | Applied Mathematical Sciences |
spelling | Majda, A. Verfasser aut Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables by A. Majda New York, NY Springer New York 1984 1 Online-Ressource (172p) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 53 0066-5452 Conservation laws arise from the modeling of physical processes through the following three steps: 1) The appropriate physical balance laws are derived for m-phy- t cal quantities, ul""'~ with u = (ul' ... ,u ) and u(x,t) defined m for x = (xl""'~) E RN (N = 1,2, or 3), t > 0 and with the values m u(x,t) lying in an open subset, G, of R , the state space. The state space G arises because physical quantities such as the density or total energy should always be positive; thus the values of u are often con strained to an open set G. 2) The flux functions appearing in these balance laws are idealized through prescribed nonlinear functions, F.(u), mapping G into J j = 1, ..• ,N while source terms are defined by S(u,x,t) with S a given smooth function of these arguments with values in Rm. In parti- lar, the detailed microscopic effects of diffusion and dissipation are ignored. 3) A generalized version of the principle of virtual work is applied (see Antman [1]). The formal result of applying the three steps (1)-(3) is that the m physical quantities u define a weak solution of an m x m system of conservation laws, o I + N(Wt'u + r W ·F.(u) + W·S(u,x,t))dxdt (1.1) R xR j=l Xj J for all W E C~(RN x R+), W(x,t) E Rm Physics Theoretical, Mathematical and Computational Physics Gasdynamik (DE-588)4019339-1 gnd rswk-swf Kompressible Strömung (DE-588)4032018-2 gnd rswk-swf Kompressibilität (DE-588)4199865-0 gnd rswk-swf Hydrodynamik (DE-588)4026302-2 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 gnd rswk-swf Hyperbolisches System (DE-588)4191897-6 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Mathematische Methode (DE-588)4155620-3 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf Hydrodynamik (DE-588)4026302-2 s Kompressibilität (DE-588)4199865-0 s Mathematische Methode (DE-588)4155620-3 s 1\p DE-604 Kompressible Strömung (DE-588)4032018-2 s Erhaltungssatz (DE-588)4131214-4 s Physik (DE-588)4045956-1 s 2\p DE-604 Hyperbolisches System (DE-588)4191897-6 s Strömungsmechanik (DE-588)4077970-1 s 3\p DE-604 Gasdynamik (DE-588)4019339-1 s 4\p DE-604 https://doi.org/10.1007/978-1-4612-1116-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Majda, A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables Physics Theoretical, Mathematical and Computational Physics Gasdynamik (DE-588)4019339-1 gnd Kompressible Strömung (DE-588)4032018-2 gnd Kompressibilität (DE-588)4199865-0 gnd Hydrodynamik (DE-588)4026302-2 gnd Erhaltungssatz (DE-588)4131214-4 gnd Hyperbolisches System (DE-588)4191897-6 gnd Strömungsmechanik (DE-588)4077970-1 gnd Mathematische Methode (DE-588)4155620-3 gnd Physik (DE-588)4045956-1 gnd |
subject_GND | (DE-588)4019339-1 (DE-588)4032018-2 (DE-588)4199865-0 (DE-588)4026302-2 (DE-588)4131214-4 (DE-588)4191897-6 (DE-588)4077970-1 (DE-588)4155620-3 (DE-588)4045956-1 |
title | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables |
title_auth | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables |
title_exact_search | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables |
title_full | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables by A. Majda |
title_fullStr | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables by A. Majda |
title_full_unstemmed | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables by A. Majda |
title_short | Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables |
title_sort | compressible fluid flow and systems of conservation laws in several space variables |
topic | Physics Theoretical, Mathematical and Computational Physics Gasdynamik (DE-588)4019339-1 gnd Kompressible Strömung (DE-588)4032018-2 gnd Kompressibilität (DE-588)4199865-0 gnd Hydrodynamik (DE-588)4026302-2 gnd Erhaltungssatz (DE-588)4131214-4 gnd Hyperbolisches System (DE-588)4191897-6 gnd Strömungsmechanik (DE-588)4077970-1 gnd Mathematische Methode (DE-588)4155620-3 gnd Physik (DE-588)4045956-1 gnd |
topic_facet | Physics Theoretical, Mathematical and Computational Physics Gasdynamik Kompressible Strömung Kompressibilität Hydrodynamik Erhaltungssatz Hyperbolisches System Strömungsmechanik Mathematische Methode Physik |
url | https://doi.org/10.1007/978-1-4612-1116-7 |
work_keys_str_mv | AT majdaa compressiblefluidflowandsystemsofconservationlawsinseveralspacevariables |