Regeneration and Networks of Queues:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1987
|
Schriftenreihe: | Applied Probability, A Series of the Applied Probability Trust
3 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Networks of queues arise frequently as models for a wide variety of congestion phenomena. Discrete event simulation is often the only available means for studying the behavior of complex networks and many such simulations are non Markovian in the sense that the underlying stochastic process cannot be repre sented as a continuous time Markov chain with countable state space. Based on representation of the underlying stochastic process of the simulation as a gen eralized semi-Markov process, this book develops probabilistic and statistical methods for discrete event simulation of networks of queues. The emphasis is on the use of underlying regenerative stochastic process structure for the design of simulation experiments and the analysis of simulation output. The most obvious methodological advantage of simulation is that in principle it is applicable to stochastic systems of arbitrary complexity. In practice, however, it is often a decidedly nontrivial matter to obtain from a simulation information that is both useful and accurate, and to obtain it in an efficient manner. These difficulties arise primarily from the inherent variability in a stochastic system, and it is necessary to seek theoretically sound and computationally efficient methods for carrying out the simulation. Apart from implementation consider ations, important concerns for simulation relate to efficient methods for generating sample paths of the underlying stochastic process. the design of simulation ex periments, and the analysis of simulation output |
Beschreibung: | 1 Online-Ressource (VIII, 224 p) |
ISBN: | 9781461210504 9781461269977 |
ISSN: | 0937-3195 |
DOI: | 10.1007/978-1-4612-1050-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419726 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1987 |||| o||u| ||||||eng d | ||
020 | |a 9781461210504 |c Online |9 978-1-4612-1050-4 | ||
020 | |a 9781461269977 |c Print |9 978-1-4612-6997-7 | ||
024 | 7 | |a 10.1007/978-1-4612-1050-4 |2 doi | |
035 | |a (OCoLC)1184338677 | ||
035 | |a (DE-599)BVBBV042419726 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Shedler, Gerald S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Regeneration and Networks of Queues |c by Gerald S. Shedler |
264 | 1 | |a New York, NY |b Springer New York |c 1987 | |
300 | |a 1 Online-Ressource (VIII, 224 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied Probability, A Series of the Applied Probability Trust |v 3 |x 0937-3195 | |
500 | |a Networks of queues arise frequently as models for a wide variety of congestion phenomena. Discrete event simulation is often the only available means for studying the behavior of complex networks and many such simulations are non Markovian in the sense that the underlying stochastic process cannot be repre sented as a continuous time Markov chain with countable state space. Based on representation of the underlying stochastic process of the simulation as a gen eralized semi-Markov process, this book develops probabilistic and statistical methods for discrete event simulation of networks of queues. The emphasis is on the use of underlying regenerative stochastic process structure for the design of simulation experiments and the analysis of simulation output. The most obvious methodological advantage of simulation is that in principle it is applicable to stochastic systems of arbitrary complexity. In practice, however, it is often a decidedly nontrivial matter to obtain from a simulation information that is both useful and accurate, and to obtain it in an efficient manner. These difficulties arise primarily from the inherent variability in a stochastic system, and it is necessary to seek theoretically sound and computationally efficient methods for carrying out the simulation. Apart from implementation consider ations, important concerns for simulation relate to efficient methods for generating sample paths of the underlying stochastic process. the design of simulation ex periments, and the analysis of simulation output | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Diskrete Simulation |0 (DE-588)4258649-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wartesystem |0 (DE-588)4251734-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Warteschlangentheorie |0 (DE-588)4255044-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wartesystem |0 (DE-588)4251734-5 |D s |
689 | 0 | 1 | |a Diskrete Simulation |0 (DE-588)4258649-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Warteschlangentheorie |0 (DE-588)4255044-0 |D s |
689 | 1 | 1 | |a Diskrete Simulation |0 (DE-588)4258649-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1050-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855143 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090702573568 |
---|---|
any_adam_object | |
author | Shedler, Gerald S. |
author_facet | Shedler, Gerald S. |
author_role | aut |
author_sort | Shedler, Gerald S. |
author_variant | g s s gs gss |
building | Verbundindex |
bvnumber | BV042419726 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184338677 (DE-599)BVBBV042419726 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1050-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03572nmm a2200541zcb4500</leader><controlfield tag="001">BV042419726</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1987 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461210504</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1050-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461269977</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6997-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1050-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184338677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419726</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shedler, Gerald S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regeneration and Networks of Queues</subfield><subfield code="c">by Gerald S. Shedler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1987</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 224 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied Probability, A Series of the Applied Probability Trust</subfield><subfield code="v">3</subfield><subfield code="x">0937-3195</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Networks of queues arise frequently as models for a wide variety of congestion phenomena. Discrete event simulation is often the only available means for studying the behavior of complex networks and many such simulations are non Markovian in the sense that the underlying stochastic process cannot be repre sented as a continuous time Markov chain with countable state space. Based on representation of the underlying stochastic process of the simulation as a gen eralized semi-Markov process, this book develops probabilistic and statistical methods for discrete event simulation of networks of queues. The emphasis is on the use of underlying regenerative stochastic process structure for the design of simulation experiments and the analysis of simulation output. The most obvious methodological advantage of simulation is that in principle it is applicable to stochastic systems of arbitrary complexity. In practice, however, it is often a decidedly nontrivial matter to obtain from a simulation information that is both useful and accurate, and to obtain it in an efficient manner. These difficulties arise primarily from the inherent variability in a stochastic system, and it is necessary to seek theoretically sound and computationally efficient methods for carrying out the simulation. Apart from implementation consider ations, important concerns for simulation relate to efficient methods for generating sample paths of the underlying stochastic process. the design of simulation ex periments, and the analysis of simulation output</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Simulation</subfield><subfield code="0">(DE-588)4258649-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wartesystem</subfield><subfield code="0">(DE-588)4251734-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Warteschlangentheorie</subfield><subfield code="0">(DE-588)4255044-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wartesystem</subfield><subfield code="0">(DE-588)4251734-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diskrete Simulation</subfield><subfield code="0">(DE-588)4258649-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Warteschlangentheorie</subfield><subfield code="0">(DE-588)4255044-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Diskrete Simulation</subfield><subfield code="0">(DE-588)4258649-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1050-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855143</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419726 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461210504 9781461269977 |
issn | 0937-3195 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855143 |
oclc_num | 1184338677 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 224 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1987 |
publishDateSearch | 1987 |
publishDateSort | 1987 |
publisher | Springer New York |
record_format | marc |
series2 | Applied Probability, A Series of the Applied Probability Trust |
spelling | Shedler, Gerald S. Verfasser aut Regeneration and Networks of Queues by Gerald S. Shedler New York, NY Springer New York 1987 1 Online-Ressource (VIII, 224 p) txt rdacontent c rdamedia cr rdacarrier Applied Probability, A Series of the Applied Probability Trust 3 0937-3195 Networks of queues arise frequently as models for a wide variety of congestion phenomena. Discrete event simulation is often the only available means for studying the behavior of complex networks and many such simulations are non Markovian in the sense that the underlying stochastic process cannot be repre sented as a continuous time Markov chain with countable state space. Based on representation of the underlying stochastic process of the simulation as a gen eralized semi-Markov process, this book develops probabilistic and statistical methods for discrete event simulation of networks of queues. The emphasis is on the use of underlying regenerative stochastic process structure for the design of simulation experiments and the analysis of simulation output. The most obvious methodological advantage of simulation is that in principle it is applicable to stochastic systems of arbitrary complexity. In practice, however, it is often a decidedly nontrivial matter to obtain from a simulation information that is both useful and accurate, and to obtain it in an efficient manner. These difficulties arise primarily from the inherent variability in a stochastic system, and it is necessary to seek theoretically sound and computationally efficient methods for carrying out the simulation. Apart from implementation consider ations, important concerns for simulation relate to efficient methods for generating sample paths of the underlying stochastic process. the design of simulation ex periments, and the analysis of simulation output Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Diskrete Simulation (DE-588)4258649-5 gnd rswk-swf Wartesystem (DE-588)4251734-5 gnd rswk-swf Warteschlangentheorie (DE-588)4255044-0 gnd rswk-swf Wartesystem (DE-588)4251734-5 s Diskrete Simulation (DE-588)4258649-5 s 1\p DE-604 Warteschlangentheorie (DE-588)4255044-0 s 2\p DE-604 https://doi.org/10.1007/978-1-4612-1050-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Shedler, Gerald S. Regeneration and Networks of Queues Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Diskrete Simulation (DE-588)4258649-5 gnd Wartesystem (DE-588)4251734-5 gnd Warteschlangentheorie (DE-588)4255044-0 gnd |
subject_GND | (DE-588)4258649-5 (DE-588)4251734-5 (DE-588)4255044-0 |
title | Regeneration and Networks of Queues |
title_auth | Regeneration and Networks of Queues |
title_exact_search | Regeneration and Networks of Queues |
title_full | Regeneration and Networks of Queues by Gerald S. Shedler |
title_fullStr | Regeneration and Networks of Queues by Gerald S. Shedler |
title_full_unstemmed | Regeneration and Networks of Queues by Gerald S. Shedler |
title_short | Regeneration and Networks of Queues |
title_sort | regeneration and networks of queues |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Diskrete Simulation (DE-588)4258649-5 gnd Wartesystem (DE-588)4251734-5 gnd Warteschlangentheorie (DE-588)4255044-0 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Diskrete Simulation Wartesystem Warteschlangentheorie |
url | https://doi.org/10.1007/978-1-4612-1050-4 |
work_keys_str_mv | AT shedlergeralds regenerationandnetworksofqueues |