Solution of Variational Inequalities in Mechanics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1988
|
Schriftenreihe: | Applied Mathematical Sciences
66 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The idea for this book was developed in the seminar on problems of continuum mechanics, which has been active for more than twelve years at the Faculty of Mathematics and Physics, Charles University, Prague. This seminar has been pursuing recent directions in the development of mathematical applications in physics; especially in continuum mechanics, and in technology. It has regularly been attended by upper division and graduate students, faculty, and scientists and researchers from various institutions from Prague and elsewhere. These seminar participants decided to publish in a self-contained monograph the results of their individual and collective efforts in developing applications for the theory of variational inequalities, which is currently a rapidly growing branch of modern analysis. The theory of variational inequalities is a relatively young mathematical discipline. Apparently, one of the main bases for its development was the paper by G. Fichera (1964) on the solution of the Signorini problem in the theory of elasticity. Later, J. L. Lions and G. Stampacchia (1967) laid the foundations of the theory itself. Time-dependent inequalities have primarily been treated in works of J. L. Lions and H. Bnlzis. The diverse applications of the variational inequalities theory are the topics of the well-known monograph by G. Duvaut and J. L. Lions, Les iniquations en micanique et en physique (1972) |
Beschreibung: | 1 Online-Ressource (X, 275p. 29 illus) |
ISBN: | 9781461210481 |
DOI: | 10.1007/978-1-4612-1048-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419725 | ||
003 | DE-604 | ||
005 | 20211018 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9781461210481 |c Online |9 978-1-4612-1048-1 | ||
024 | 7 | |a 10.1007/978-1-4612-1048-1 |2 doi | |
035 | |a (OCoLC)1184262911 | ||
035 | |a (DE-599)BVBBV042419725 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a SK 660 |0 (DE-625)143251: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a 73C60 |2 msc | ||
084 | |a MAT 000 |2 stub | ||
084 | |a 49A29 |2 msc | ||
100 | 1 | |a Hlaváček, Ivan |d 1931- |e Verfasser |0 (DE-588)119194910 |4 aut | |
245 | 1 | 0 | |a Solution of Variational Inequalities in Mechanics |c by I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek |
264 | 1 | |a New York, NY |b Springer New York |c 1988 | |
300 | |a 1 Online-Ressource (X, 275p. 29 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Applied Mathematical Sciences |v 66 | |
500 | |a The idea for this book was developed in the seminar on problems of continuum mechanics, which has been active for more than twelve years at the Faculty of Mathematics and Physics, Charles University, Prague. This seminar has been pursuing recent directions in the development of mathematical applications in physics; especially in continuum mechanics, and in technology. It has regularly been attended by upper division and graduate students, faculty, and scientists and researchers from various institutions from Prague and elsewhere. These seminar participants decided to publish in a self-contained monograph the results of their individual and collective efforts in developing applications for the theory of variational inequalities, which is currently a rapidly growing branch of modern analysis. The theory of variational inequalities is a relatively young mathematical discipline. Apparently, one of the main bases for its development was the paper by G. Fichera (1964) on the solution of the Signorini problem in the theory of elasticity. Later, J. L. Lions and G. Stampacchia (1967) laid the foundations of the theory itself. Time-dependent inequalities have primarily been treated in works of J. L. Lions and H. Bnlzis. The diverse applications of the variational inequalities theory are the topics of the well-known monograph by G. Duvaut and J. L. Lions, Les iniquations en micanique et en physique (1972) | ||
650 | 4 | |a Physics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 0 | 7 | |a Variationsungleichung |0 (DE-588)4187420-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mechanik |0 (DE-588)4038168-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Variationsungleichung |0 (DE-588)4187420-1 |D s |
689 | 0 | 1 | |a Mechanik |0 (DE-588)4038168-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Haslinger, J. |e Sonstige |4 oth | |
700 | 1 | |a Nečas, J. |e Sonstige |4 oth | |
700 | 1 | |a Lovíšek, J. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-387-96597-0 |
830 | 0 | |a Applied Mathematical Sciences |v 66 |w (DE-604)BV040244599 |9 66 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1048-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855142 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090710962176 |
---|---|
any_adam_object | |
author | Hlaváček, Ivan 1931- |
author_GND | (DE-588)119194910 |
author_facet | Hlaváček, Ivan 1931- |
author_role | aut |
author_sort | Hlaváček, Ivan 1931- |
author_variant | i h ih |
building | Verbundindex |
bvnumber | BV042419725 |
classification_rvk | SK 660 SK 950 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184262911 (DE-599)BVBBV042419725 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-1-4612-1048-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03457nmm a2200553zcb4500</leader><controlfield tag="001">BV042419725</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211018 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461210481</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1048-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1048-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184262911</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419725</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 660</subfield><subfield code="0">(DE-625)143251:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">73C60</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">49A29</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hlaváček, Ivan</subfield><subfield code="d">1931-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)119194910</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solution of Variational Inequalities in Mechanics</subfield><subfield code="c">by I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 275p. 29 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">66</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The idea for this book was developed in the seminar on problems of continuum mechanics, which has been active for more than twelve years at the Faculty of Mathematics and Physics, Charles University, Prague. This seminar has been pursuing recent directions in the development of mathematical applications in physics; especially in continuum mechanics, and in technology. It has regularly been attended by upper division and graduate students, faculty, and scientists and researchers from various institutions from Prague and elsewhere. These seminar participants decided to publish in a self-contained monograph the results of their individual and collective efforts in developing applications for the theory of variational inequalities, which is currently a rapidly growing branch of modern analysis. The theory of variational inequalities is a relatively young mathematical discipline. Apparently, one of the main bases for its development was the paper by G. Fichera (1964) on the solution of the Signorini problem in the theory of elasticity. Later, J. L. Lions and G. Stampacchia (1967) laid the foundations of the theory itself. Time-dependent inequalities have primarily been treated in works of J. L. Lions and H. Bnlzis. The diverse applications of the variational inequalities theory are the topics of the well-known monograph by G. Duvaut and J. L. Lions, Les iniquations en micanique et en physique (1972)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Variationsungleichung</subfield><subfield code="0">(DE-588)4187420-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mechanik</subfield><subfield code="0">(DE-588)4038168-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haslinger, J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nečas, J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lovíšek, J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-387-96597-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">66</subfield><subfield code="w">(DE-604)BV040244599</subfield><subfield code="9">66</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1048-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855142</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419725 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461210481 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855142 |
oclc_num | 1184262911 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 275p. 29 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer New York |
record_format | marc |
series | Applied Mathematical Sciences |
series2 | Applied Mathematical Sciences |
spelling | Hlaváček, Ivan 1931- Verfasser (DE-588)119194910 aut Solution of Variational Inequalities in Mechanics by I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek New York, NY Springer New York 1988 1 Online-Ressource (X, 275p. 29 illus) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 66 The idea for this book was developed in the seminar on problems of continuum mechanics, which has been active for more than twelve years at the Faculty of Mathematics and Physics, Charles University, Prague. This seminar has been pursuing recent directions in the development of mathematical applications in physics; especially in continuum mechanics, and in technology. It has regularly been attended by upper division and graduate students, faculty, and scientists and researchers from various institutions from Prague and elsewhere. These seminar participants decided to publish in a self-contained monograph the results of their individual and collective efforts in developing applications for the theory of variational inequalities, which is currently a rapidly growing branch of modern analysis. The theory of variational inequalities is a relatively young mathematical discipline. Apparently, one of the main bases for its development was the paper by G. Fichera (1964) on the solution of the Signorini problem in the theory of elasticity. Later, J. L. Lions and G. Stampacchia (1967) laid the foundations of the theory itself. Time-dependent inequalities have primarily been treated in works of J. L. Lions and H. Bnlzis. The diverse applications of the variational inequalities theory are the topics of the well-known monograph by G. Duvaut and J. L. Lions, Les iniquations en micanique et en physique (1972) Physics Theoretical, Mathematical and Computational Physics Variationsungleichung (DE-588)4187420-1 gnd rswk-swf Mechanik (DE-588)4038168-7 gnd rswk-swf Variationsungleichung (DE-588)4187420-1 s Mechanik (DE-588)4038168-7 s 1\p DE-604 Haslinger, J. Sonstige oth Nečas, J. Sonstige oth Lovíšek, J. Sonstige oth Erscheint auch als Druck-Ausgabe 978-0-387-96597-0 Applied Mathematical Sciences 66 (DE-604)BV040244599 66 https://doi.org/10.1007/978-1-4612-1048-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hlaváček, Ivan 1931- Solution of Variational Inequalities in Mechanics Applied Mathematical Sciences Physics Theoretical, Mathematical and Computational Physics Variationsungleichung (DE-588)4187420-1 gnd Mechanik (DE-588)4038168-7 gnd |
subject_GND | (DE-588)4187420-1 (DE-588)4038168-7 |
title | Solution of Variational Inequalities in Mechanics |
title_auth | Solution of Variational Inequalities in Mechanics |
title_exact_search | Solution of Variational Inequalities in Mechanics |
title_full | Solution of Variational Inequalities in Mechanics by I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek |
title_fullStr | Solution of Variational Inequalities in Mechanics by I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek |
title_full_unstemmed | Solution of Variational Inequalities in Mechanics by I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek |
title_short | Solution of Variational Inequalities in Mechanics |
title_sort | solution of variational inequalities in mechanics |
topic | Physics Theoretical, Mathematical and Computational Physics Variationsungleichung (DE-588)4187420-1 gnd Mechanik (DE-588)4038168-7 gnd |
topic_facet | Physics Theoretical, Mathematical and Computational Physics Variationsungleichung Mechanik |
url | https://doi.org/10.1007/978-1-4612-1048-1 |
volume_link | (DE-604)BV040244599 |
work_keys_str_mv | AT hlavacekivan solutionofvariationalinequalitiesinmechanics AT haslingerj solutionofvariationalinequalitiesinmechanics AT necasj solutionofvariationalinequalitiesinmechanics AT lovisekj solutionofvariationalinequalitiesinmechanics |