Multiphase Averaging for Classical Systems: With Applications to Adiabatic Theorems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1988
|
Schriftenreihe: | Applied Mathematical Sciences
72 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the past several decades many significant results in averaging for systems of ODE's have been obtained. These results have not attracted a tention in proportion to their importance, partly because they have been overshadowed by KAM theory, and partly because they remain widely scattered - and often untranslated - throughout the Russian literature. The present book seeks to remedy that situation by providing a summary, including proofs, of averaging and related techniques for single and multiphase systems of ODE's. The first part of the book surveys most of what is known in the general case and examines the role of ergodicity in averaging. Stronger stability results are then obtained for the special case of Hamiltonian systems, and the relation of these results to KAM Theory is discussed. Finally, in view of their close relation to averaging methods, both classical and quantum adiabatic theorems are considered at some length. With the inclusion of nine concise appendices, the book is very nearly self-contained, and should serve the needs of both physicists desiring an accessible summary of known results, and of mathematicians seeing an introduction to current areas of research in averaging |
Beschreibung: | 1 Online-Ressource (XI, 360p. 60 illus) |
ISBN: | 9781461210443 9780387967783 |
ISSN: | 0066-5452 |
DOI: | 10.1007/978-1-4612-1044-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419723 | ||
003 | DE-604 | ||
005 | 20150625 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9781461210443 |c Online |9 978-1-4612-1044-3 | ||
020 | |a 9780387967783 |c Print |9 978-0-387-96778-3 | ||
024 | 7 | |a 10.1007/978-1-4612-1044-3 |2 doi | |
035 | |a (OCoLC)863677238 | ||
035 | |a (DE-599)BVBBV042419723 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Lochak, Pierre |d 1957- |e Verfasser |0 (DE-588)1072789507 |4 aut | |
245 | 1 | 0 | |a Multiphase Averaging for Classical Systems |b With Applications to Adiabatic Theorems |c by Pierre Lochak, Claude Meunier |
264 | 1 | |a New York, NY |b Springer New York |c 1988 | |
300 | |a 1 Online-Ressource (XI, 360p. 60 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied Mathematical Sciences |v 72 |x 0066-5452 | |
500 | |a In the past several decades many significant results in averaging for systems of ODE's have been obtained. These results have not attracted a tention in proportion to their importance, partly because they have been overshadowed by KAM theory, and partly because they remain widely scattered - and often untranslated - throughout the Russian literature. The present book seeks to remedy that situation by providing a summary, including proofs, of averaging and related techniques for single and multiphase systems of ODE's. The first part of the book surveys most of what is known in the general case and examines the role of ergodicity in averaging. Stronger stability results are then obtained for the special case of Hamiltonian systems, and the relation of these results to KAM Theory is discussed. Finally, in view of their close relation to averaging methods, both classical and quantum adiabatic theorems are considered at some length. With the inclusion of nine concise appendices, the book is very nearly self-contained, and should serve the needs of both physicists desiring an accessible summary of known results, and of mathematicians seeing an introduction to current areas of research in averaging | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mittelungsverfahren |0 (DE-588)4126019-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Adiabatensatz |0 (DE-588)4204479-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgleichung |0 (DE-588)4012249-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotische Methode |0 (DE-588)4287476-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Gewöhnliche Differentialgleichung |0 (DE-588)4020929-5 |D s |
689 | 0 | 1 | |a Mittelungsverfahren |0 (DE-588)4126019-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Differentialgleichung |0 (DE-588)4012249-9 |D s |
689 | 1 | 1 | |a Asymptotische Methode |0 (DE-588)4287476-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Adiabatensatz |0 (DE-588)4204479-0 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Meunier, Claude |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-1044-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855140 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090706767872 |
---|---|
any_adam_object | |
author | Lochak, Pierre 1957- |
author_GND | (DE-588)1072789507 |
author_facet | Lochak, Pierre 1957- |
author_role | aut |
author_sort | Lochak, Pierre 1957- |
author_variant | p l pl |
building | Verbundindex |
bvnumber | BV042419723 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863677238 (DE-599)BVBBV042419723 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-1044-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03642nmm a2200613zcb4500</leader><controlfield tag="001">BV042419723</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150625 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461210443</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-1044-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387967783</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-96778-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-1044-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863677238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419723</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lochak, Pierre</subfield><subfield code="d">1957-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1072789507</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiphase Averaging for Classical Systems</subfield><subfield code="b">With Applications to Adiabatic Theorems</subfield><subfield code="c">by Pierre Lochak, Claude Meunier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 360p. 60 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">72</subfield><subfield code="x">0066-5452</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the past several decades many significant results in averaging for systems of ODE's have been obtained. These results have not attracted a tention in proportion to their importance, partly because they have been overshadowed by KAM theory, and partly because they remain widely scattered - and often untranslated - throughout the Russian literature. The present book seeks to remedy that situation by providing a summary, including proofs, of averaging and related techniques for single and multiphase systems of ODE's. The first part of the book surveys most of what is known in the general case and examines the role of ergodicity in averaging. Stronger stability results are then obtained for the special case of Hamiltonian systems, and the relation of these results to KAM Theory is discussed. Finally, in view of their close relation to averaging methods, both classical and quantum adiabatic theorems are considered at some length. With the inclusion of nine concise appendices, the book is very nearly self-contained, and should serve the needs of both physicists desiring an accessible summary of known results, and of mathematicians seeing an introduction to current areas of research in averaging</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mittelungsverfahren</subfield><subfield code="0">(DE-588)4126019-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Adiabatensatz</subfield><subfield code="0">(DE-588)4204479-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4020929-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mittelungsverfahren</subfield><subfield code="0">(DE-588)4126019-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Differentialgleichung</subfield><subfield code="0">(DE-588)4012249-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Asymptotische Methode</subfield><subfield code="0">(DE-588)4287476-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Adiabatensatz</subfield><subfield code="0">(DE-588)4204479-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meunier, Claude</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-1044-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855140</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419723 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461210443 9780387967783 |
issn | 0066-5452 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855140 |
oclc_num | 863677238 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 360p. 60 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer New York |
record_format | marc |
series2 | Applied Mathematical Sciences |
spelling | Lochak, Pierre 1957- Verfasser (DE-588)1072789507 aut Multiphase Averaging for Classical Systems With Applications to Adiabatic Theorems by Pierre Lochak, Claude Meunier New York, NY Springer New York 1988 1 Online-Ressource (XI, 360p. 60 illus) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 72 0066-5452 In the past several decades many significant results in averaging for systems of ODE's have been obtained. These results have not attracted a tention in proportion to their importance, partly because they have been overshadowed by KAM theory, and partly because they remain widely scattered - and often untranslated - throughout the Russian literature. The present book seeks to remedy that situation by providing a summary, including proofs, of averaging and related techniques for single and multiphase systems of ODE's. The first part of the book surveys most of what is known in the general case and examines the role of ergodicity in averaging. Stronger stability results are then obtained for the special case of Hamiltonian systems, and the relation of these results to KAM Theory is discussed. Finally, in view of their close relation to averaging methods, both classical and quantum adiabatic theorems are considered at some length. With the inclusion of nine concise appendices, the book is very nearly self-contained, and should serve the needs of both physicists desiring an accessible summary of known results, and of mathematicians seeing an introduction to current areas of research in averaging Mathematics Global analysis (Mathematics) Analysis Mathematik Mittelungsverfahren (DE-588)4126019-3 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd rswk-swf Adiabatensatz (DE-588)4204479-0 gnd rswk-swf Differentialgleichung (DE-588)4012249-9 gnd rswk-swf Asymptotische Methode (DE-588)4287476-2 gnd rswk-swf Gewöhnliche Differentialgleichung (DE-588)4020929-5 s Mittelungsverfahren (DE-588)4126019-3 s 1\p DE-604 Differentialgleichung (DE-588)4012249-9 s Asymptotische Methode (DE-588)4287476-2 s 2\p DE-604 Adiabatensatz (DE-588)4204479-0 s 3\p DE-604 Meunier, Claude Sonstige oth https://doi.org/10.1007/978-1-4612-1044-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lochak, Pierre 1957- Multiphase Averaging for Classical Systems With Applications to Adiabatic Theorems Mathematics Global analysis (Mathematics) Analysis Mathematik Mittelungsverfahren (DE-588)4126019-3 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Adiabatensatz (DE-588)4204479-0 gnd Differentialgleichung (DE-588)4012249-9 gnd Asymptotische Methode (DE-588)4287476-2 gnd |
subject_GND | (DE-588)4126019-3 (DE-588)4020929-5 (DE-588)4204479-0 (DE-588)4012249-9 (DE-588)4287476-2 |
title | Multiphase Averaging for Classical Systems With Applications to Adiabatic Theorems |
title_auth | Multiphase Averaging for Classical Systems With Applications to Adiabatic Theorems |
title_exact_search | Multiphase Averaging for Classical Systems With Applications to Adiabatic Theorems |
title_full | Multiphase Averaging for Classical Systems With Applications to Adiabatic Theorems by Pierre Lochak, Claude Meunier |
title_fullStr | Multiphase Averaging for Classical Systems With Applications to Adiabatic Theorems by Pierre Lochak, Claude Meunier |
title_full_unstemmed | Multiphase Averaging for Classical Systems With Applications to Adiabatic Theorems by Pierre Lochak, Claude Meunier |
title_short | Multiphase Averaging for Classical Systems |
title_sort | multiphase averaging for classical systems with applications to adiabatic theorems |
title_sub | With Applications to Adiabatic Theorems |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Mittelungsverfahren (DE-588)4126019-3 gnd Gewöhnliche Differentialgleichung (DE-588)4020929-5 gnd Adiabatensatz (DE-588)4204479-0 gnd Differentialgleichung (DE-588)4012249-9 gnd Asymptotische Methode (DE-588)4287476-2 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Mittelungsverfahren Gewöhnliche Differentialgleichung Adiabatensatz Differentialgleichung Asymptotische Methode |
url | https://doi.org/10.1007/978-1-4612-1044-3 |
work_keys_str_mv | AT lochakpierre multiphaseaveragingforclassicalsystemswithapplicationstoadiabatictheorems AT meunierclaude multiphaseaveragingforclassicalsystemswithapplicationstoadiabatictheorems |