Gröbner Bases: A Computational Approach to Commutative Algebra
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1993
|
Schriftenreihe: | Graduate Texts in Mathematics
141 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The origins of the mathematics in this book date back more than two thou sand years, as can be seen from the fact that one of the most important algorithms presented here bears the name of the Greek mathematician Eu clid. The word "algorithm" as well as the key word "algebra" in the title of this book come from the name and the work of the ninth-century scientist Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbek istan and worked in Baghdad at the court of Harun al-Rashid's son. The word "algorithm" is actually a westernization of al-Khowarizmi's name, while "algebra" derives from "al-jabr," a term that appears in the title of his book Kitab al-jabr wa'l muqabala, where he discusses symbolic methods for the solution of equations. This close connection between algebra and al gorithms lasted roughly up to the beginning of this century; until then, the primary goal of algebra was the design of constructive methods for solving equations by means of symbolic transformations. During the second half of the nineteenth century, a new line of thought began to enter algebra from the realm of geometry, where it had been successful since Euclid's time, namely, the axiomatic method |
Beschreibung: | 1 Online-Ressource (XXII, 576 p) |
ISBN: | 9781461209133 9781461269441 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4612-0913-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419672 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9781461209133 |c Online |9 978-1-4612-0913-3 | ||
020 | |a 9781461269441 |c Print |9 978-1-4612-6944-1 | ||
024 | 7 | |a 10.1007/978-1-4612-0913-3 |2 doi | |
035 | |a (OCoLC)1184262805 | ||
035 | |a (DE-599)BVBBV042419672 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 |a DE-739 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Becker, Thomas |e Verfasser |4 aut | |
245 | 1 | 0 | |a Gröbner Bases |b A Computational Approach to Commutative Algebra |c by Thomas Becker, Volker Weispfenning |
264 | 1 | |a New York, NY |b Springer New York |c 1993 | |
300 | |a 1 Online-Ressource (XXII, 576 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Graduate Texts in Mathematics |v 141 |x 0072-5285 | |
500 | |a The origins of the mathematics in this book date back more than two thou sand years, as can be seen from the fact that one of the most important algorithms presented here bears the name of the Greek mathematician Eu clid. The word "algorithm" as well as the key word "algebra" in the title of this book come from the name and the work of the ninth-century scientist Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbek istan and worked in Baghdad at the court of Harun al-Rashid's son. The word "algorithm" is actually a westernization of al-Khowarizmi's name, while "algebra" derives from "al-jabr," a term that appears in the title of his book Kitab al-jabr wa'l muqabala, where he discusses symbolic methods for the solution of equations. This close connection between algebra and al gorithms lasted roughly up to the beginning of this century; until then, the primary goal of algebra was the design of constructive methods for solving equations by means of symbolic transformations. During the second half of the nineteenth century, a new line of thought began to enter algebra from the realm of geometry, where it had been successful since Euclid's time, namely, the axiomatic method | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutative Algebra |0 (DE-588)4164821-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynom |0 (DE-588)4046711-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gröbner-Basis |0 (DE-588)4276378-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computeralgebra |0 (DE-588)4010449-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kommutative Algebra |0 (DE-588)4164821-3 |D s |
689 | 0 | 1 | |a Computeralgebra |0 (DE-588)4010449-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gröbner-Basis |0 (DE-588)4276378-2 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Ideal |g Mathematik |0 (DE-588)4161198-6 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Polynom |0 (DE-588)4046711-9 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
700 | 1 | |a Weispfenning, Volker |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0913-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855089 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090585133056 |
---|---|
any_adam_object | |
author | Becker, Thomas |
author_facet | Becker, Thomas |
author_role | aut |
author_sort | Becker, Thomas |
author_variant | t b tb |
building | Verbundindex |
bvnumber | BV042419672 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184262805 (DE-599)BVBBV042419672 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0913-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03834nmm a2200673zcb4500</leader><controlfield tag="001">BV042419672</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461209133</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0913-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461269441</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6944-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0913-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184262805</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419672</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Becker, Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gröbner Bases</subfield><subfield code="b">A Computational Approach to Commutative Algebra</subfield><subfield code="c">by Thomas Becker, Volker Weispfenning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 576 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">141</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The origins of the mathematics in this book date back more than two thou sand years, as can be seen from the fact that one of the most important algorithms presented here bears the name of the Greek mathematician Eu clid. The word "algorithm" as well as the key word "algebra" in the title of this book come from the name and the work of the ninth-century scientist Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbek istan and worked in Baghdad at the court of Harun al-Rashid's son. The word "algorithm" is actually a westernization of al-Khowarizmi's name, while "algebra" derives from "al-jabr," a term that appears in the title of his book Kitab al-jabr wa'l muqabala, where he discusses symbolic methods for the solution of equations. This close connection between algebra and al gorithms lasted roughly up to the beginning of this century; until then, the primary goal of algebra was the design of constructive methods for solving equations by means of symbolic transformations. During the second half of the nineteenth century, a new line of thought began to enter algebra from the realm of geometry, where it had been successful since Euclid's time, namely, the axiomatic method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gröbner-Basis</subfield><subfield code="0">(DE-588)4276378-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kommutative Algebra</subfield><subfield code="0">(DE-588)4164821-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computeralgebra</subfield><subfield code="0">(DE-588)4010449-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gröbner-Basis</subfield><subfield code="0">(DE-588)4276378-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Ideal</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4161198-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Polynom</subfield><subfield code="0">(DE-588)4046711-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weispfenning, Volker</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0913-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855089</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419672 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461209133 9781461269441 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855089 |
oclc_num | 1184262805 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-739 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-739 |
physical | 1 Online-Ressource (XXII, 576 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer New York |
record_format | marc |
series2 | Graduate Texts in Mathematics |
spelling | Becker, Thomas Verfasser aut Gröbner Bases A Computational Approach to Commutative Algebra by Thomas Becker, Volker Weispfenning New York, NY Springer New York 1993 1 Online-Ressource (XXII, 576 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 141 0072-5285 The origins of the mathematics in this book date back more than two thou sand years, as can be seen from the fact that one of the most important algorithms presented here bears the name of the Greek mathematician Eu clid. The word "algorithm" as well as the key word "algebra" in the title of this book come from the name and the work of the ninth-century scientist Mohammed ibn Musa al-Khowarizmi, who was born in what is now Uzbek istan and worked in Baghdad at the court of Harun al-Rashid's son. The word "algorithm" is actually a westernization of al-Khowarizmi's name, while "algebra" derives from "al-jabr," a term that appears in the title of his book Kitab al-jabr wa'l muqabala, where he discusses symbolic methods for the solution of equations. This close connection between algebra and al gorithms lasted roughly up to the beginning of this century; until then, the primary goal of algebra was the design of constructive methods for solving equations by means of symbolic transformations. During the second half of the nineteenth century, a new line of thought began to enter algebra from the realm of geometry, where it had been successful since Euclid's time, namely, the axiomatic method Mathematics Mathematics, general Mathematik Algebra (DE-588)4001156-2 gnd rswk-swf Ideal Mathematik (DE-588)4161198-6 gnd rswk-swf Kommutative Algebra (DE-588)4164821-3 gnd rswk-swf Polynom (DE-588)4046711-9 gnd rswk-swf Gröbner-Basis (DE-588)4276378-2 gnd rswk-swf Computeralgebra (DE-588)4010449-7 gnd rswk-swf Kommutative Algebra (DE-588)4164821-3 s Computeralgebra (DE-588)4010449-7 s 1\p DE-604 Gröbner-Basis (DE-588)4276378-2 s 2\p DE-604 Ideal Mathematik (DE-588)4161198-6 s 3\p DE-604 Polynom (DE-588)4046711-9 s 4\p DE-604 Algebra (DE-588)4001156-2 s 5\p DE-604 Weispfenning, Volker Sonstige oth https://doi.org/10.1007/978-1-4612-0913-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Becker, Thomas Gröbner Bases A Computational Approach to Commutative Algebra Mathematics Mathematics, general Mathematik Algebra (DE-588)4001156-2 gnd Ideal Mathematik (DE-588)4161198-6 gnd Kommutative Algebra (DE-588)4164821-3 gnd Polynom (DE-588)4046711-9 gnd Gröbner-Basis (DE-588)4276378-2 gnd Computeralgebra (DE-588)4010449-7 gnd |
subject_GND | (DE-588)4001156-2 (DE-588)4161198-6 (DE-588)4164821-3 (DE-588)4046711-9 (DE-588)4276378-2 (DE-588)4010449-7 |
title | Gröbner Bases A Computational Approach to Commutative Algebra |
title_auth | Gröbner Bases A Computational Approach to Commutative Algebra |
title_exact_search | Gröbner Bases A Computational Approach to Commutative Algebra |
title_full | Gröbner Bases A Computational Approach to Commutative Algebra by Thomas Becker, Volker Weispfenning |
title_fullStr | Gröbner Bases A Computational Approach to Commutative Algebra by Thomas Becker, Volker Weispfenning |
title_full_unstemmed | Gröbner Bases A Computational Approach to Commutative Algebra by Thomas Becker, Volker Weispfenning |
title_short | Gröbner Bases |
title_sort | grobner bases a computational approach to commutative algebra |
title_sub | A Computational Approach to Commutative Algebra |
topic | Mathematics Mathematics, general Mathematik Algebra (DE-588)4001156-2 gnd Ideal Mathematik (DE-588)4161198-6 gnd Kommutative Algebra (DE-588)4164821-3 gnd Polynom (DE-588)4046711-9 gnd Gröbner-Basis (DE-588)4276378-2 gnd Computeralgebra (DE-588)4010449-7 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Algebra Ideal Mathematik Kommutative Algebra Polynom Gröbner-Basis Computeralgebra |
url | https://doi.org/10.1007/978-1-4612-0913-3 |
work_keys_str_mv | AT beckerthomas grobnerbasesacomputationalapproachtocommutativealgebra AT weispfenningvolker grobnerbasesacomputationalapproachtocommutativealgebra |