The Special Theory of Relativity: A Mathematical Exposition
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1993
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Based on courses taught at the University of Dublin, Carnegie Mellon University, and mostly at Simon Fraser University, this book presents the special theory of relativity from a mathematical point of view. It begins with the axioms of the Minkowski vector space and the flat spacetime manifold. Then it discusses the kinematics of special relativity in terms of Lorentz tranformations, and treats the group structure of Lorentz transformations. Extending the discussion to spinors, the author shows how a unimodular mapping of spinor (vector) space can induce a proper, orthochronous Lorentz mapping on the Minkowski vector space. The second part begins with a discussion of relativistic particle mechanics from both the Lagrangian and Hamiltonian points of view. The book then turns to the relativistic (classical) field theory, including a proof of Noether's theorem and discussions of the Klein-Gordon, electromagnetic, Dirac, and non-abelian gauge fields. The final chapter deals with recent work on classical fields in an eight-dimensional covariant phase space |
Beschreibung: | 1 Online-Ressource (XII, 232p. 27 illus) |
ISBN: | 9781461208938 9780387940427 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-1-4612-0893-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419664 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9781461208938 |c Online |9 978-1-4612-0893-8 | ||
020 | |a 9780387940427 |c Print |9 978-0-387-94042-7 | ||
024 | 7 | |a 10.1007/978-1-4612-0893-8 |2 doi | |
035 | |a (OCoLC)863707866 | ||
035 | |a (DE-599)BVBBV042419664 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Das, Anadijiban |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Special Theory of Relativity |b A Mathematical Exposition |c by Anadijiban Das |
264 | 1 | |a New York, NY |b Springer New York |c 1993 | |
300 | |a 1 Online-Ressource (XII, 232p. 27 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a Based on courses taught at the University of Dublin, Carnegie Mellon University, and mostly at Simon Fraser University, this book presents the special theory of relativity from a mathematical point of view. It begins with the axioms of the Minkowski vector space and the flat spacetime manifold. Then it discusses the kinematics of special relativity in terms of Lorentz tranformations, and treats the group structure of Lorentz transformations. Extending the discussion to spinors, the author shows how a unimodular mapping of spinor (vector) space can induce a proper, orthochronous Lorentz mapping on the Minkowski vector space. The second part begins with a discussion of relativistic particle mechanics from both the Lagrangian and Hamiltonian points of view. The book then turns to the relativistic (classical) field theory, including a proof of Noether's theorem and discussions of the Klein-Gordon, electromagnetic, Dirac, and non-abelian gauge fields. The final chapter deals with recent work on classical fields in an eight-dimensional covariant phase space | ||
650 | 4 | |a Physics | |
650 | 4 | |a Cytology | |
650 | 4 | |a Classical and Quantum Gravitation, Relativity Theory | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Cell Biology | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spezielle Relativitätstheorie |0 (DE-588)4182215-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spezielle Relativitätstheorie |0 (DE-588)4182215-8 |D s |
689 | 0 | 1 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0893-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855081 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090569404416 |
---|---|
any_adam_object | |
author | Das, Anadijiban |
author_facet | Das, Anadijiban |
author_role | aut |
author_sort | Das, Anadijiban |
author_variant | a d ad |
building | Verbundindex |
bvnumber | BV042419664 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863707866 (DE-599)BVBBV042419664 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-1-4612-0893-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02848nmm a2200493zc 4500</leader><controlfield tag="001">BV042419664</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461208938</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0893-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387940427</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-94042-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0893-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863707866</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419664</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Das, Anadijiban</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Special Theory of Relativity</subfield><subfield code="b">A Mathematical Exposition</subfield><subfield code="c">by Anadijiban Das</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 232p. 27 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Based on courses taught at the University of Dublin, Carnegie Mellon University, and mostly at Simon Fraser University, this book presents the special theory of relativity from a mathematical point of view. It begins with the axioms of the Minkowski vector space and the flat spacetime manifold. Then it discusses the kinematics of special relativity in terms of Lorentz tranformations, and treats the group structure of Lorentz transformations. Extending the discussion to spinors, the author shows how a unimodular mapping of spinor (vector) space can induce a proper, orthochronous Lorentz mapping on the Minkowski vector space. The second part begins with a discussion of relativistic particle mechanics from both the Lagrangian and Hamiltonian points of view. The book then turns to the relativistic (classical) field theory, including a proof of Noether's theorem and discussions of the Klein-Gordon, electromagnetic, Dirac, and non-abelian gauge fields. The final chapter deals with recent work on classical fields in an eight-dimensional covariant phase space</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cytology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classical and Quantum Gravitation, Relativity Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell Biology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spezielle Relativitätstheorie</subfield><subfield code="0">(DE-588)4182215-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spezielle Relativitätstheorie</subfield><subfield code="0">(DE-588)4182215-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0893-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855081</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419664 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461208938 9780387940427 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855081 |
oclc_num | 863707866 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 232p. 27 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Das, Anadijiban Verfasser aut The Special Theory of Relativity A Mathematical Exposition by Anadijiban Das New York, NY Springer New York 1993 1 Online-Ressource (XII, 232p. 27 illus) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 Based on courses taught at the University of Dublin, Carnegie Mellon University, and mostly at Simon Fraser University, this book presents the special theory of relativity from a mathematical point of view. It begins with the axioms of the Minkowski vector space and the flat spacetime manifold. Then it discusses the kinematics of special relativity in terms of Lorentz tranformations, and treats the group structure of Lorentz transformations. Extending the discussion to spinors, the author shows how a unimodular mapping of spinor (vector) space can induce a proper, orthochronous Lorentz mapping on the Minkowski vector space. The second part begins with a discussion of relativistic particle mechanics from both the Lagrangian and Hamiltonian points of view. The book then turns to the relativistic (classical) field theory, including a proof of Noether's theorem and discussions of the Klein-Gordon, electromagnetic, Dirac, and non-abelian gauge fields. The final chapter deals with recent work on classical fields in an eight-dimensional covariant phase space Physics Cytology Classical and Quantum Gravitation, Relativity Theory Theoretical, Mathematical and Computational Physics Cell Biology Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Spezielle Relativitätstheorie (DE-588)4182215-8 gnd rswk-swf Spezielle Relativitätstheorie (DE-588)4182215-8 s Mathematische Physik (DE-588)4037952-8 s 1\p DE-604 https://doi.org/10.1007/978-1-4612-0893-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Das, Anadijiban The Special Theory of Relativity A Mathematical Exposition Physics Cytology Classical and Quantum Gravitation, Relativity Theory Theoretical, Mathematical and Computational Physics Cell Biology Mathematische Physik (DE-588)4037952-8 gnd Spezielle Relativitätstheorie (DE-588)4182215-8 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4182215-8 |
title | The Special Theory of Relativity A Mathematical Exposition |
title_auth | The Special Theory of Relativity A Mathematical Exposition |
title_exact_search | The Special Theory of Relativity A Mathematical Exposition |
title_full | The Special Theory of Relativity A Mathematical Exposition by Anadijiban Das |
title_fullStr | The Special Theory of Relativity A Mathematical Exposition by Anadijiban Das |
title_full_unstemmed | The Special Theory of Relativity A Mathematical Exposition by Anadijiban Das |
title_short | The Special Theory of Relativity |
title_sort | the special theory of relativity a mathematical exposition |
title_sub | A Mathematical Exposition |
topic | Physics Cytology Classical and Quantum Gravitation, Relativity Theory Theoretical, Mathematical and Computational Physics Cell Biology Mathematische Physik (DE-588)4037952-8 gnd Spezielle Relativitätstheorie (DE-588)4182215-8 gnd |
topic_facet | Physics Cytology Classical and Quantum Gravitation, Relativity Theory Theoretical, Mathematical and Computational Physics Cell Biology Mathematische Physik Spezielle Relativitätstheorie |
url | https://doi.org/10.1007/978-1-4612-0893-8 |
work_keys_str_mv | AT dasanadijiban thespecialtheoryofrelativityamathematicalexposition |