Composition operators and classical function theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1993
|
Schriftenreihe: | Universitext: Tracts in Mathematics
|
Schlagworte: | |
Online-Zugang: | UBW01 Volltext |
Beschreibung: | The study of composition operators links some of the most basic questions you can ask about linear operators with beautiful classical results from analytic-function theory. The process invests old theorems with new meanings, and bestows upon functional analysis an intriguing class of concrete linear operators. Best of all, the subject can be appreciated by anyone with an interest in function theory or functional analysis, and a background roughly equivalent to the following twelve chapters of Rudin's textbook Real and Complex Analysis [Rdn '87]: Chapters 1-7 (measure and integration, LP spaces, basic Hilbert and Banach space theory), and 10-14 (basic function theory through the Riemann Mapping Theorem). In this book I introduce the reader to both the theory of composition operators, and the classical results that form its infrastructure. I develop the subject in a way that emphasizes its geometric content, staying as much as possible within the prerequisites set out in the twelve fundamental chapters of Rudin's book. Although much of the material on operators is quite recent, this book is not intended to be an exhaustive survey. It is, quite simply, an invitation to join in the fun. The story goes something like this |
Beschreibung: | 1 Online-Ressource (XVI, 223 S.) |
ISBN: | 9781461208877 9780387940670 |
DOI: | 10.1007/978-1-4612-0887-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419661 | ||
003 | DE-604 | ||
005 | 20180921 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9781461208877 |c Online |9 978-1-4612-0887-7 | ||
020 | |a 9780387940670 |c Print |9 978-0-387-94067-0 | ||
024 | 7 | |a 10.1007/978-1-4612-0887-7 |2 doi | |
035 | |a (OCoLC)869857404 | ||
035 | |a (DE-599)BVBBV042419661 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-20 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Shapiro, Joel H. |e Verfasser |0 (DE-588)1106286227 |4 aut | |
245 | 1 | 0 | |a Composition operators and classical function theory |c Joel H. Shapiro |
264 | 1 | |a New York, NY |b Springer New York |c 1993 | |
300 | |a 1 Online-Ressource (XVI, 223 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext: Tracts in Mathematics | |
500 | |a The study of composition operators links some of the most basic questions you can ask about linear operators with beautiful classical results from analytic-function theory. The process invests old theorems with new meanings, and bestows upon functional analysis an intriguing class of concrete linear operators. Best of all, the subject can be appreciated by anyone with an interest in function theory or functional analysis, and a background roughly equivalent to the following twelve chapters of Rudin's textbook Real and Complex Analysis [Rdn '87]: Chapters 1-7 (measure and integration, LP spaces, basic Hilbert and Banach space theory), and 10-14 (basic function theory through the Riemann Mapping Theorem). In this book I introduce the reader to both the theory of composition operators, and the classical results that form its infrastructure. I develop the subject in a way that emphasizes its geometric content, staying as much as possible within the prerequisites set out in the twelve fundamental chapters of Rudin's book. Although much of the material on operators is quite recent, this book is not intended to be an exhaustive survey. It is, quite simply, an invitation to join in the fun. The story goes something like this | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Geometrische Funktionentheorie |0 (DE-588)4156711-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kompositionsoperator |0 (DE-588)4236426-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrische Funktionentheorie |0 (DE-588)4156711-0 |D s |
689 | 0 | 1 | |a Kompositionsoperator |0 (DE-588)4236426-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Geometrische Funktionentheorie |0 (DE-588)4156711-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Kompositionsoperator |0 (DE-588)4236426-7 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0887-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-30-PQE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855078 | ||
966 | e | |u http://ebookcentral.proquest.com/lib/ub-wuerzburg/detail.action?docID=3074173 |l UBW01 |p ZDB-30-PQE |q UBW_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153090559967232 |
---|---|
any_adam_object | |
author | Shapiro, Joel H. |
author_GND | (DE-588)1106286227 |
author_facet | Shapiro, Joel H. |
author_role | aut |
author_sort | Shapiro, Joel H. |
author_variant | j h s jh jhs |
building | Verbundindex |
bvnumber | BV042419661 |
classification_rvk | SK 750 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-30-PQE ZDB-2-BAE |
ctrlnum | (OCoLC)869857404 (DE-599)BVBBV042419661 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0887-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03235nmm a2200541zc 4500</leader><controlfield tag="001">BV042419661</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180921 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461208877</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0887-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387940670</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-94067-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0887-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869857404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419661</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shapiro, Joel H.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1106286227</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Composition operators and classical function theory</subfield><subfield code="c">Joel H. Shapiro</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 223 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext: Tracts in Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The study of composition operators links some of the most basic questions you can ask about linear operators with beautiful classical results from analytic-function theory. The process invests old theorems with new meanings, and bestows upon functional analysis an intriguing class of concrete linear operators. Best of all, the subject can be appreciated by anyone with an interest in function theory or functional analysis, and a background roughly equivalent to the following twelve chapters of Rudin's textbook Real and Complex Analysis [Rdn '87]: Chapters 1-7 (measure and integration, LP spaces, basic Hilbert and Banach space theory), and 10-14 (basic function theory through the Riemann Mapping Theorem). In this book I introduce the reader to both the theory of composition operators, and the classical results that form its infrastructure. I develop the subject in a way that emphasizes its geometric content, staying as much as possible within the prerequisites set out in the twelve fundamental chapters of Rudin's book. Although much of the material on operators is quite recent, this book is not intended to be an exhaustive survey. It is, quite simply, an invitation to join in the fun. The story goes something like this</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Funktionentheorie</subfield><subfield code="0">(DE-588)4156711-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompositionsoperator</subfield><subfield code="0">(DE-588)4236426-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrische Funktionentheorie</subfield><subfield code="0">(DE-588)4156711-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kompositionsoperator</subfield><subfield code="0">(DE-588)4236426-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geometrische Funktionentheorie</subfield><subfield code="0">(DE-588)4156711-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kompositionsoperator</subfield><subfield code="0">(DE-588)4236426-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0887-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855078</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://ebookcentral.proquest.com/lib/ub-wuerzburg/detail.action?docID=3074173</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBW_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042419661 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461208877 9780387940670 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855078 |
oclc_num | 869857404 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-20 DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-20 DE-634 |
physical | 1 Online-Ressource (XVI, 223 S.) |
psigel | ZDB-2-SMA ZDB-30-PQE ZDB-2-BAE ZDB-2-SMA_Archive ZDB-30-PQE UBW_Einzelkauf |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext: Tracts in Mathematics |
spelling | Shapiro, Joel H. Verfasser (DE-588)1106286227 aut Composition operators and classical function theory Joel H. Shapiro New York, NY Springer New York 1993 1 Online-Ressource (XVI, 223 S.) txt rdacontent c rdamedia cr rdacarrier Universitext: Tracts in Mathematics The study of composition operators links some of the most basic questions you can ask about linear operators with beautiful classical results from analytic-function theory. The process invests old theorems with new meanings, and bestows upon functional analysis an intriguing class of concrete linear operators. Best of all, the subject can be appreciated by anyone with an interest in function theory or functional analysis, and a background roughly equivalent to the following twelve chapters of Rudin's textbook Real and Complex Analysis [Rdn '87]: Chapters 1-7 (measure and integration, LP spaces, basic Hilbert and Banach space theory), and 10-14 (basic function theory through the Riemann Mapping Theorem). In this book I introduce the reader to both the theory of composition operators, and the classical results that form its infrastructure. I develop the subject in a way that emphasizes its geometric content, staying as much as possible within the prerequisites set out in the twelve fundamental chapters of Rudin's book. Although much of the material on operators is quite recent, this book is not intended to be an exhaustive survey. It is, quite simply, an invitation to join in the fun. The story goes something like this Mathematics Global analysis (Mathematics) Analysis Mathematik Geometrische Funktionentheorie (DE-588)4156711-0 gnd rswk-swf Kompositionsoperator (DE-588)4236426-7 gnd rswk-swf Geometrische Funktionentheorie (DE-588)4156711-0 s Kompositionsoperator (DE-588)4236426-7 s DE-604 https://doi.org/10.1007/978-1-4612-0887-7 Verlag Volltext |
spellingShingle | Shapiro, Joel H. Composition operators and classical function theory Mathematics Global analysis (Mathematics) Analysis Mathematik Geometrische Funktionentheorie (DE-588)4156711-0 gnd Kompositionsoperator (DE-588)4236426-7 gnd |
subject_GND | (DE-588)4156711-0 (DE-588)4236426-7 |
title | Composition operators and classical function theory |
title_auth | Composition operators and classical function theory |
title_exact_search | Composition operators and classical function theory |
title_full | Composition operators and classical function theory Joel H. Shapiro |
title_fullStr | Composition operators and classical function theory Joel H. Shapiro |
title_full_unstemmed | Composition operators and classical function theory Joel H. Shapiro |
title_short | Composition operators and classical function theory |
title_sort | composition operators and classical function theory |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Geometrische Funktionentheorie (DE-588)4156711-0 gnd Kompositionsoperator (DE-588)4236426-7 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Geometrische Funktionentheorie Kompositionsoperator |
url | https://doi.org/10.1007/978-1-4612-0887-7 |
work_keys_str_mv | AT shapirojoelh compositionoperatorsandclassicalfunctiontheory |