Space-Filling Curves:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1994
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The subject of space-filling curves has fascinated mathematicians for over a century and has intrigued many generations of students of mathematics. Working in this area is like skating on the edge of reason. Unfortunately, no comprehensive treatment has ever been attempted other than the gallant effort by W. Sierpiriski in 1912. At that time, the subject was still in its infancy and the most interesting and perplexing results were still to come. Besides, Sierpiriski's paper was written in Polish and published in a journal that is not readily accessible (Sierpiriski [2]). Most of the early literature on the subject is in French, German, and Polish, providing an additional raison d'etre for a comprehensive treatment in English. While there was, understandably, some intensive research activity on this subject around the turn of the century, contributions have, nevertheless, continued up to the present and there is no end in sight, indicating that the subject is still very much alive. The recent interest in fractals has refocused interest on space filling curves, and the study of fractals has thrown some new light on this small but venerable part of mathematics. This monograph is neither a textbook nor an encyclopedic treatment of the subject nor a historical account, but it is a little of each. While it may lend structure to a seminar or pro-seminar, or be useful as a supplement in a course on topology or mathematical analysis, it is primarily intended for self-study by the aficionados of classical analysis |
Beschreibung: | 1 Online-Ressource (XV, 194 p) |
ISBN: | 9781461208716 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-1-4612-0871-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419653 | ||
003 | DE-604 | ||
005 | 20211115 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781461208716 |c Online |9 978-1-4612-0871-6 | ||
024 | 7 | |a 10.1007/978-1-4612-0871-6 |2 doi | |
035 | |a (OCoLC)1184397125 | ||
035 | |a (DE-599)BVBBV042419653 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a SK 280 |0 (DE-625)143228: |2 rvk | ||
084 | |a 01A60 |2 msc | ||
084 | |a MAT 000 |2 stub | ||
084 | |a 54-03 |2 msc | ||
084 | |a 01A55 |2 msc | ||
084 | |a 54F50 |2 msc | ||
084 | |a 28A75 |2 msc | ||
100 | 1 | |a Sagan, Hans |e Verfasser |4 aut | |
245 | 1 | 0 | |a Space-Filling Curves |c by Hans Sagan |
264 | 1 | |a New York, NY |b Springer New York |c 1994 | |
300 | |a 1 Online-Ressource (XV, 194 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a The subject of space-filling curves has fascinated mathematicians for over a century and has intrigued many generations of students of mathematics. Working in this area is like skating on the edge of reason. Unfortunately, no comprehensive treatment has ever been attempted other than the gallant effort by W. Sierpiriski in 1912. At that time, the subject was still in its infancy and the most interesting and perplexing results were still to come. Besides, Sierpiriski's paper was written in Polish and published in a journal that is not readily accessible (Sierpiriski [2]). Most of the early literature on the subject is in French, German, and Polish, providing an additional raison d'etre for a comprehensive treatment in English. While there was, understandably, some intensive research activity on this subject around the turn of the century, contributions have, nevertheless, continued up to the present and there is no end in sight, indicating that the subject is still very much alive. The recent interest in fractals has refocused interest on space filling curves, and the study of fractals has thrown some new light on this small but venerable part of mathematics. This monograph is neither a textbook nor an encyclopedic treatment of the subject nor a historical account, but it is a little of each. While it may lend structure to a seminar or pro-seminar, or be useful as a supplement in a course on topology or mathematical analysis, it is primarily intended for self-study by the aficionados of classical analysis | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kurve |0 (DE-588)4033824-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologie |0 (DE-588)4060425-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Raumfüllende Kurve |0 (DE-588)4374972-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fläche |0 (DE-588)4129864-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abbildung |g Mathematik |0 (DE-588)4000044-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kurve |0 (DE-588)4033824-1 |D s |
689 | 0 | 1 | |a Abbildung |g Mathematik |0 (DE-588)4000044-8 |D s |
689 | 0 | 2 | |a Fläche |0 (DE-588)4129864-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Topologie |0 (DE-588)4060425-1 |D s |
689 | 1 | 1 | |a Raumfüllende Kurve |0 (DE-588)4374972-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-387-94265-0 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0871-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855070 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090555772928 |
---|---|
any_adam_object | |
author | Sagan, Hans |
author_facet | Sagan, Hans |
author_role | aut |
author_sort | Sagan, Hans |
author_variant | h s hs |
building | Verbundindex |
bvnumber | BV042419653 |
classification_rvk | SK 280 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184397125 (DE-599)BVBBV042419653 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0871-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03726nmm a2200637zc 4500</leader><controlfield tag="001">BV042419653</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211115 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461208716</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0871-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0871-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184397125</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419653</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 280</subfield><subfield code="0">(DE-625)143228:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">01A60</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54-03</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">01A55</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54F50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">28A75</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sagan, Hans</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Space-Filling Curves</subfield><subfield code="c">by Hans Sagan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 194 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The subject of space-filling curves has fascinated mathematicians for over a century and has intrigued many generations of students of mathematics. Working in this area is like skating on the edge of reason. Unfortunately, no comprehensive treatment has ever been attempted other than the gallant effort by W. Sierpiriski in 1912. At that time, the subject was still in its infancy and the most interesting and perplexing results were still to come. Besides, Sierpiriski's paper was written in Polish and published in a journal that is not readily accessible (Sierpiriski [2]). Most of the early literature on the subject is in French, German, and Polish, providing an additional raison d'etre for a comprehensive treatment in English. While there was, understandably, some intensive research activity on this subject around the turn of the century, contributions have, nevertheless, continued up to the present and there is no end in sight, indicating that the subject is still very much alive. The recent interest in fractals has refocused interest on space filling curves, and the study of fractals has thrown some new light on this small but venerable part of mathematics. This monograph is neither a textbook nor an encyclopedic treatment of the subject nor a historical account, but it is a little of each. While it may lend structure to a seminar or pro-seminar, or be useful as a supplement in a course on topology or mathematical analysis, it is primarily intended for self-study by the aficionados of classical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kurve</subfield><subfield code="0">(DE-588)4033824-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Raumfüllende Kurve</subfield><subfield code="0">(DE-588)4374972-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fläche</subfield><subfield code="0">(DE-588)4129864-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abbildung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4000044-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kurve</subfield><subfield code="0">(DE-588)4033824-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Abbildung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4000044-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Fläche</subfield><subfield code="0">(DE-588)4129864-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Topologie</subfield><subfield code="0">(DE-588)4060425-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Raumfüllende Kurve</subfield><subfield code="0">(DE-588)4374972-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-387-94265-0</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0871-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855070</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419653 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461208716 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855070 |
oclc_num | 1184397125 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 194 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Sagan, Hans Verfasser aut Space-Filling Curves by Hans Sagan New York, NY Springer New York 1994 1 Online-Ressource (XV, 194 p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 The subject of space-filling curves has fascinated mathematicians for over a century and has intrigued many generations of students of mathematics. Working in this area is like skating on the edge of reason. Unfortunately, no comprehensive treatment has ever been attempted other than the gallant effort by W. Sierpiriski in 1912. At that time, the subject was still in its infancy and the most interesting and perplexing results were still to come. Besides, Sierpiriski's paper was written in Polish and published in a journal that is not readily accessible (Sierpiriski [2]). Most of the early literature on the subject is in French, German, and Polish, providing an additional raison d'etre for a comprehensive treatment in English. While there was, understandably, some intensive research activity on this subject around the turn of the century, contributions have, nevertheless, continued up to the present and there is no end in sight, indicating that the subject is still very much alive. The recent interest in fractals has refocused interest on space filling curves, and the study of fractals has thrown some new light on this small but venerable part of mathematics. This monograph is neither a textbook nor an encyclopedic treatment of the subject nor a historical account, but it is a little of each. While it may lend structure to a seminar or pro-seminar, or be useful as a supplement in a course on topology or mathematical analysis, it is primarily intended for self-study by the aficionados of classical analysis Mathematics Mathematics, general Mathematik Kurve (DE-588)4033824-1 gnd rswk-swf Topologie (DE-588)4060425-1 gnd rswk-swf Raumfüllende Kurve (DE-588)4374972-0 gnd rswk-swf Fläche (DE-588)4129864-0 gnd rswk-swf Abbildung Mathematik (DE-588)4000044-8 gnd rswk-swf Kurve (DE-588)4033824-1 s Abbildung Mathematik (DE-588)4000044-8 s Fläche (DE-588)4129864-0 s 1\p DE-604 Topologie (DE-588)4060425-1 s Raumfüllende Kurve (DE-588)4374972-0 s 2\p DE-604 Erscheint auch als Druck-Ausgabe 978-0-387-94265-0 https://doi.org/10.1007/978-1-4612-0871-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sagan, Hans Space-Filling Curves Mathematics Mathematics, general Mathematik Kurve (DE-588)4033824-1 gnd Topologie (DE-588)4060425-1 gnd Raumfüllende Kurve (DE-588)4374972-0 gnd Fläche (DE-588)4129864-0 gnd Abbildung Mathematik (DE-588)4000044-8 gnd |
subject_GND | (DE-588)4033824-1 (DE-588)4060425-1 (DE-588)4374972-0 (DE-588)4129864-0 (DE-588)4000044-8 |
title | Space-Filling Curves |
title_auth | Space-Filling Curves |
title_exact_search | Space-Filling Curves |
title_full | Space-Filling Curves by Hans Sagan |
title_fullStr | Space-Filling Curves by Hans Sagan |
title_full_unstemmed | Space-Filling Curves by Hans Sagan |
title_short | Space-Filling Curves |
title_sort | space filling curves |
topic | Mathematics Mathematics, general Mathematik Kurve (DE-588)4033824-1 gnd Topologie (DE-588)4060425-1 gnd Raumfüllende Kurve (DE-588)4374972-0 gnd Fläche (DE-588)4129864-0 gnd Abbildung Mathematik (DE-588)4000044-8 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Kurve Topologie Raumfüllende Kurve Fläche Abbildung Mathematik |
url | https://doi.org/10.1007/978-1-4612-0871-6 |
work_keys_str_mv | AT saganhans spacefillingcurves |