Modern Geometry with Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1994
|
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is an introduction to the theory and applications of "modern geometry" ~ roughly speaking, geometry that was developed after Euclid. It covers three major areas of non-Euclidean geometry and their applications: spherical geometry (used in navigation and astronomy), projective geometry (used in art), and spacetime geometry (used in the Special Theory of Relativity). In addition it treats some of the more useful topics from Euclidean geometry, focusing on the use of Euclidean motions, and includes a chapter on conics and the orbits of planets. My aim in writing this book was to balance theory with applications. It seems to me that students of geometry, especially prospective mathematics teachers, need to be aware of how geometry is used as well as how it is derived. Every topic in the book is motivated by an application and many additional applications are given in the exercises. This emphasis on applications is responsible for a somewhat nontraditional choice of topics: I left out hyperbolic geometry, a traditional topic with practically no applications that are intelligible to undergraduates, and replaced it with the spacetime geometry of Special Relativity, a thoroughly non-Euclidean geometry with striking implications for our own physical universe. The book contains enough material for a one semester course in geometry at the sophomore-to-senior level, as well as many exercises, mostly of a nonroutine nature (the instructor may want to supplement them with routine exercises of his/her own) |
Beschreibung: | 1 Online-Ressource (VIII, 204p. 150 illus) |
ISBN: | 9781461208556 9780387942223 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-1-4612-0855-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419649 | ||
003 | DE-604 | ||
005 | 20171215 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781461208556 |c Online |9 978-1-4612-0855-6 | ||
020 | |a 9780387942223 |c Print |9 978-0-387-94222-3 | ||
024 | 7 | |a 10.1007/978-1-4612-0855-6 |2 doi | |
035 | |a (OCoLC)869853018 | ||
035 | |a (DE-599)BVBBV042419649 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Jennings, George A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Modern Geometry with Applications |c by George A. Jennings |
264 | 1 | |a New York, NY |b Springer New York |c 1994 | |
300 | |a 1 Online-Ressource (VIII, 204p. 150 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a This book is an introduction to the theory and applications of "modern geometry" ~ roughly speaking, geometry that was developed after Euclid. It covers three major areas of non-Euclidean geometry and their applications: spherical geometry (used in navigation and astronomy), projective geometry (used in art), and spacetime geometry (used in the Special Theory of Relativity). In addition it treats some of the more useful topics from Euclidean geometry, focusing on the use of Euclidean motions, and includes a chapter on conics and the orbits of planets. My aim in writing this book was to balance theory with applications. It seems to me that students of geometry, especially prospective mathematics teachers, need to be aware of how geometry is used as well as how it is derived. Every topic in the book is motivated by an application and many additional applications are given in the exercises. This emphasis on applications is responsible for a somewhat nontraditional choice of topics: I left out hyperbolic geometry, a traditional topic with practically no applications that are intelligible to undergraduates, and replaced it with the spacetime geometry of Special Relativity, a thoroughly non-Euclidean geometry with striking implications for our own physical universe. The book contains enough material for a one semester course in geometry at the sophomore-to-senior level, as well as many exercises, mostly of a nonroutine nature (the instructor may want to supplement them with routine exercises of his/her own) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Projektive Geometrie |0 (DE-588)4047436-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kegelschnitt |0 (DE-588)4125170-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sphärische Geometrie |0 (DE-588)4182228-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kegelschnitt |0 (DE-588)4125170-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Projektive Geometrie |0 (DE-588)4047436-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Sphärische Geometrie |0 (DE-588)4182228-6 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0855-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855066 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090552627200 |
---|---|
any_adam_object | |
author | Jennings, George A. |
author_facet | Jennings, George A. |
author_role | aut |
author_sort | Jennings, George A. |
author_variant | g a j ga gaj |
building | Verbundindex |
bvnumber | BV042419649 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869853018 (DE-599)BVBBV042419649 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0855-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03698nmm a2200589zc 4500</leader><controlfield tag="001">BV042419649</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461208556</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0855-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387942223</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-94222-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0855-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869853018</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419649</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jennings, George A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern Geometry with Applications</subfield><subfield code="c">by George A. Jennings</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 204p. 150 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is an introduction to the theory and applications of "modern geometry" ~ roughly speaking, geometry that was developed after Euclid. It covers three major areas of non-Euclidean geometry and their applications: spherical geometry (used in navigation and astronomy), projective geometry (used in art), and spacetime geometry (used in the Special Theory of Relativity). In addition it treats some of the more useful topics from Euclidean geometry, focusing on the use of Euclidean motions, and includes a chapter on conics and the orbits of planets. My aim in writing this book was to balance theory with applications. It seems to me that students of geometry, especially prospective mathematics teachers, need to be aware of how geometry is used as well as how it is derived. Every topic in the book is motivated by an application and many additional applications are given in the exercises. This emphasis on applications is responsible for a somewhat nontraditional choice of topics: I left out hyperbolic geometry, a traditional topic with practically no applications that are intelligible to undergraduates, and replaced it with the spacetime geometry of Special Relativity, a thoroughly non-Euclidean geometry with striking implications for our own physical universe. The book contains enough material for a one semester course in geometry at the sophomore-to-senior level, as well as many exercises, mostly of a nonroutine nature (the instructor may want to supplement them with routine exercises of his/her own)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kegelschnitt</subfield><subfield code="0">(DE-588)4125170-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sphärische Geometrie</subfield><subfield code="0">(DE-588)4182228-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kegelschnitt</subfield><subfield code="0">(DE-588)4125170-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Projektive Geometrie</subfield><subfield code="0">(DE-588)4047436-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Sphärische Geometrie</subfield><subfield code="0">(DE-588)4182228-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0855-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855066</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419649 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461208556 9780387942223 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855066 |
oclc_num | 869853018 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 204p. 150 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Springer New York |
record_format | marc |
series2 | Universitext |
spelling | Jennings, George A. Verfasser aut Modern Geometry with Applications by George A. Jennings New York, NY Springer New York 1994 1 Online-Ressource (VIII, 204p. 150 illus) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 This book is an introduction to the theory and applications of "modern geometry" ~ roughly speaking, geometry that was developed after Euclid. It covers three major areas of non-Euclidean geometry and their applications: spherical geometry (used in navigation and astronomy), projective geometry (used in art), and spacetime geometry (used in the Special Theory of Relativity). In addition it treats some of the more useful topics from Euclidean geometry, focusing on the use of Euclidean motions, and includes a chapter on conics and the orbits of planets. My aim in writing this book was to balance theory with applications. It seems to me that students of geometry, especially prospective mathematics teachers, need to be aware of how geometry is used as well as how it is derived. Every topic in the book is motivated by an application and many additional applications are given in the exercises. This emphasis on applications is responsible for a somewhat nontraditional choice of topics: I left out hyperbolic geometry, a traditional topic with practically no applications that are intelligible to undergraduates, and replaced it with the spacetime geometry of Special Relativity, a thoroughly non-Euclidean geometry with striking implications for our own physical universe. The book contains enough material for a one semester course in geometry at the sophomore-to-senior level, as well as many exercises, mostly of a nonroutine nature (the instructor may want to supplement them with routine exercises of his/her own) Mathematics Geometry Mathematik Projektive Geometrie (DE-588)4047436-7 gnd rswk-swf Kegelschnitt (DE-588)4125170-2 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Sphärische Geometrie (DE-588)4182228-6 gnd rswk-swf Kegelschnitt (DE-588)4125170-2 s 1\p DE-604 Projektive Geometrie (DE-588)4047436-7 s 2\p DE-604 Sphärische Geometrie (DE-588)4182228-6 s 3\p DE-604 Geometrie (DE-588)4020236-7 s 4\p DE-604 https://doi.org/10.1007/978-1-4612-0855-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jennings, George A. Modern Geometry with Applications Mathematics Geometry Mathematik Projektive Geometrie (DE-588)4047436-7 gnd Kegelschnitt (DE-588)4125170-2 gnd Geometrie (DE-588)4020236-7 gnd Sphärische Geometrie (DE-588)4182228-6 gnd |
subject_GND | (DE-588)4047436-7 (DE-588)4125170-2 (DE-588)4020236-7 (DE-588)4182228-6 |
title | Modern Geometry with Applications |
title_auth | Modern Geometry with Applications |
title_exact_search | Modern Geometry with Applications |
title_full | Modern Geometry with Applications by George A. Jennings |
title_fullStr | Modern Geometry with Applications by George A. Jennings |
title_full_unstemmed | Modern Geometry with Applications by George A. Jennings |
title_short | Modern Geometry with Applications |
title_sort | modern geometry with applications |
topic | Mathematics Geometry Mathematik Projektive Geometrie (DE-588)4047436-7 gnd Kegelschnitt (DE-588)4125170-2 gnd Geometrie (DE-588)4020236-7 gnd Sphärische Geometrie (DE-588)4182228-6 gnd |
topic_facet | Mathematics Geometry Mathematik Projektive Geometrie Kegelschnitt Geometrie Sphärische Geometrie |
url | https://doi.org/10.1007/978-1-4612-0855-6 |
work_keys_str_mv | AT jenningsgeorgea moderngeometrywithapplications |