Contests in Higher Mathematics: Miklós Schweitzer Competitions 1962–1991
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1996
|
Schriftenreihe: | Problem Books in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | One of the most effective ways to stimulate students to enjoy intellectual efforts is the scientific competition. In 1894 the Hungarian Mathematical and Physical Society introduced a mathematical competition for high school students. The success of high school competitions led the Mathematical Society to found a college level contest, named after Miklós Schweitzer. The problems of the Schweitzer Contests are proposed and selected by the most prominent Hungarian mathematicians. This book collects the problems posed in the contests between 1962 and 1991 which range from algebra, combinatorics, theory of functions, geometry, measure theory, number theory, operator theory, probability theory, topology, to set theory. The second part contains the solutions. The Schweitzer competition is one of the most unique in the world. The experience shows that this competition helps to identify research talents. This collection of problems and solutions in several fields in mathematics can serve as a guide for many undergraduates and young mathematicians. The large variety of research level problems might be of interest for more mature mathematicians and historians of mathematics as well |
Beschreibung: | 1 Online-Ressource (VII, 570 p) |
ISBN: | 9781461207337 9781461268864 |
ISSN: | 0941-3502 |
DOI: | 10.1007/978-1-4612-0733-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419607 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781461207337 |c Online |9 978-1-4612-0733-7 | ||
020 | |a 9781461268864 |c Print |9 978-1-4612-6886-4 | ||
024 | 7 | |a 10.1007/978-1-4612-0733-7 |2 doi | |
035 | |a (OCoLC)1165440638 | ||
035 | |a (DE-599)BVBBV042419607 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Székely, Gábor J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Contests in Higher Mathematics |b Miklós Schweitzer Competitions 1962–1991 |c edited by Gábor J. Székely |
264 | 1 | |a New York, NY |b Springer New York |c 1996 | |
300 | |a 1 Online-Ressource (VII, 570 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Problem Books in Mathematics |x 0941-3502 | |
500 | |a One of the most effective ways to stimulate students to enjoy intellectual efforts is the scientific competition. In 1894 the Hungarian Mathematical and Physical Society introduced a mathematical competition for high school students. The success of high school competitions led the Mathematical Society to found a college level contest, named after Miklós Schweitzer. The problems of the Schweitzer Contests are proposed and selected by the most prominent Hungarian mathematicians. This book collects the problems posed in the contests between 1962 and 1991 which range from algebra, combinatorics, theory of functions, geometry, measure theory, number theory, operator theory, probability theory, topology, to set theory. The second part contains the solutions. The Schweitzer competition is one of the most unique in the world. The experience shows that this competition helps to identify research talents. This collection of problems and solutions in several fields in mathematics can serve as a guide for many undergraduates and young mathematicians. The large variety of research level problems might be of interest for more mature mathematicians and historians of mathematics as well | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Combinatorics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143389-0 |a Aufgabensammlung |2 gnd-content | |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0733-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855024 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090457206784 |
---|---|
any_adam_object | |
author | Székely, Gábor J. |
author_facet | Székely, Gábor J. |
author_role | aut |
author_sort | Székely, Gábor J. |
author_variant | g j s gj gjs |
building | Verbundindex |
bvnumber | BV042419607 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165440638 (DE-599)BVBBV042419607 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0733-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02980nmm a2200517zc 4500</leader><controlfield tag="001">BV042419607</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461207337</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0733-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268864</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6886-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0733-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165440638</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419607</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Székely, Gábor J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Contests in Higher Mathematics</subfield><subfield code="b">Miklós Schweitzer Competitions 1962–1991</subfield><subfield code="c">edited by Gábor J. Székely</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 570 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Problem Books in Mathematics</subfield><subfield code="x">0941-3502</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">One of the most effective ways to stimulate students to enjoy intellectual efforts is the scientific competition. In 1894 the Hungarian Mathematical and Physical Society introduced a mathematical competition for high school students. The success of high school competitions led the Mathematical Society to found a college level contest, named after Miklós Schweitzer. The problems of the Schweitzer Contests are proposed and selected by the most prominent Hungarian mathematicians. This book collects the problems posed in the contests between 1962 and 1991 which range from algebra, combinatorics, theory of functions, geometry, measure theory, number theory, operator theory, probability theory, topology, to set theory. The second part contains the solutions. The Schweitzer competition is one of the most unique in the world. The experience shows that this competition helps to identify research talents. This collection of problems and solutions in several fields in mathematics can serve as a guide for many undergraduates and young mathematicians. The large variety of research level problems might be of interest for more mature mathematicians and historians of mathematics as well</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143389-0</subfield><subfield code="a">Aufgabensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0733-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855024</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content |
genre_facet | Aufgabensammlung |
id | DE-604.BV042419607 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461207337 9781461268864 |
issn | 0941-3502 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855024 |
oclc_num | 1165440638 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 570 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer New York |
record_format | marc |
series2 | Problem Books in Mathematics |
spelling | Székely, Gábor J. Verfasser aut Contests in Higher Mathematics Miklós Schweitzer Competitions 1962–1991 edited by Gábor J. Székely New York, NY Springer New York 1996 1 Online-Ressource (VII, 570 p) txt rdacontent c rdamedia cr rdacarrier Problem Books in Mathematics 0941-3502 One of the most effective ways to stimulate students to enjoy intellectual efforts is the scientific competition. In 1894 the Hungarian Mathematical and Physical Society introduced a mathematical competition for high school students. The success of high school competitions led the Mathematical Society to found a college level contest, named after Miklós Schweitzer. The problems of the Schweitzer Contests are proposed and selected by the most prominent Hungarian mathematicians. This book collects the problems posed in the contests between 1962 and 1991 which range from algebra, combinatorics, theory of functions, geometry, measure theory, number theory, operator theory, probability theory, topology, to set theory. The second part contains the solutions. The Schweitzer competition is one of the most unique in the world. The experience shows that this competition helps to identify research talents. This collection of problems and solutions in several fields in mathematics can serve as a guide for many undergraduates and young mathematicians. The large variety of research level problems might be of interest for more mature mathematicians and historians of mathematics as well Mathematics Algebra Global analysis (Mathematics) Combinatorics Geometry Analysis Mathematik Mathematik (DE-588)4037944-9 gnd rswk-swf 1\p (DE-588)4143389-0 Aufgabensammlung gnd-content Mathematik (DE-588)4037944-9 s 2\p DE-604 https://doi.org/10.1007/978-1-4612-0733-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Székely, Gábor J. Contests in Higher Mathematics Miklós Schweitzer Competitions 1962–1991 Mathematics Algebra Global analysis (Mathematics) Combinatorics Geometry Analysis Mathematik Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4143389-0 |
title | Contests in Higher Mathematics Miklós Schweitzer Competitions 1962–1991 |
title_auth | Contests in Higher Mathematics Miklós Schweitzer Competitions 1962–1991 |
title_exact_search | Contests in Higher Mathematics Miklós Schweitzer Competitions 1962–1991 |
title_full | Contests in Higher Mathematics Miklós Schweitzer Competitions 1962–1991 edited by Gábor J. Székely |
title_fullStr | Contests in Higher Mathematics Miklós Schweitzer Competitions 1962–1991 edited by Gábor J. Székely |
title_full_unstemmed | Contests in Higher Mathematics Miklós Schweitzer Competitions 1962–1991 edited by Gábor J. Székely |
title_short | Contests in Higher Mathematics |
title_sort | contests in higher mathematics miklos schweitzer competitions 1962 1991 |
title_sub | Miklós Schweitzer Competitions 1962–1991 |
topic | Mathematics Algebra Global analysis (Mathematics) Combinatorics Geometry Analysis Mathematik Mathematik (DE-588)4037944-9 gnd |
topic_facet | Mathematics Algebra Global analysis (Mathematics) Combinatorics Geometry Analysis Mathematik Aufgabensammlung |
url | https://doi.org/10.1007/978-1-4612-0733-7 |
work_keys_str_mv | AT szekelygaborj contestsinhighermathematicsmiklosschweitzercompetitions19621991 |