Numerical Approximation of Hyperbolic Systems of Conservation Laws:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1996
|
Schriftenreihe: | Applied Mathematical Sciences
118 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This work is devoted to the theory and approximation of nonlinear hyper bolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors, and we shall make frequent references to Godlewski and Raviart (1991) (hereafter noted G. R. ), though the present volume can be read independently. This earlier publication, apart from a first chap ter, especially covered the scalar case. Thus, we shall detail here neither the mathematical theory of multidimensional scalar conservation laws nor their approximation in the one-dimensional case by finite-difference con servative schemes, both of which were treated in G. R. , but we shall mostly consider systems. The theory for systems is in fact much more difficult and not at all completed. This explains why we shall mainly concentrate on some theoretical aspects that are needed in the applications, such as the solution of the Riemann problem, with occasional insights into more sophisticated problems. The present book is divided into six chapters, including an introductory chapter. For the reader's convenience, we shall resume in this Introduction the notions that are necessary for a self-sufficient understanding of this book -the main definitions of hyperbolicity, weak solutions, and entropy present the practical examples that will be thoroughly developed in the following chapters, and recall the main results concerning the scalar case |
Beschreibung: | 1 Online-Ressource (VIII, 510 p) |
ISBN: | 9781461207139 9781461268789 |
ISSN: | 0066-5452 |
DOI: | 10.1007/978-1-4612-0713-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419600 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9781461207139 |c Online |9 978-1-4612-0713-9 | ||
020 | |a 9781461268789 |c Print |9 978-1-4612-6878-9 | ||
024 | 7 | |a 10.1007/978-1-4612-0713-9 |2 doi | |
035 | |a (OCoLC)1184689271 | ||
035 | |a (DE-599)BVBBV042419600 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Godlewski, Edwige |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical Approximation of Hyperbolic Systems of Conservation Laws |c by Edwige Godlewski, Pierre-Arnaud Raviart |
264 | 1 | |a New York, NY |b Springer New York |c 1996 | |
300 | |a 1 Online-Ressource (VIII, 510 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied Mathematical Sciences |v 118 |x 0066-5452 | |
500 | |a This work is devoted to the theory and approximation of nonlinear hyper bolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors, and we shall make frequent references to Godlewski and Raviart (1991) (hereafter noted G. R. ), though the present volume can be read independently. This earlier publication, apart from a first chap ter, especially covered the scalar case. Thus, we shall detail here neither the mathematical theory of multidimensional scalar conservation laws nor their approximation in the one-dimensional case by finite-difference con servative schemes, both of which were treated in G. R. , but we shall mostly consider systems. The theory for systems is in fact much more difficult and not at all completed. This explains why we shall mainly concentrate on some theoretical aspects that are needed in the applications, such as the solution of the Riemann problem, with occasional insights into more sophisticated problems. The present book is divided into six chapters, including an introductory chapter. For the reader's convenience, we shall resume in this Introduction the notions that are necessary for a self-sufficient understanding of this book -the main definitions of hyperbolicity, weak solutions, and entropy present the practical examples that will be thoroughly developed in the following chapters, and recall the main results concerning the scalar case | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Electronic data processing | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Numerical and Computational Physics | |
650 | 4 | |a Numeric Computing | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Nichtlineares hyperbolisches System |0 (DE-588)4191896-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolisches System |0 (DE-588)4191897-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erhaltungssatz |0 (DE-588)4131214-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 0 | 1 | |a Nichtlineares hyperbolisches System |0 (DE-588)4191896-4 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hyperbolisches System |0 (DE-588)4191897-6 |D s |
689 | 1 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Raviart, Pierre-Arnaud |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0713-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855017 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090444623872 |
---|---|
any_adam_object | |
author | Godlewski, Edwige |
author_facet | Godlewski, Edwige |
author_role | aut |
author_sort | Godlewski, Edwige |
author_variant | e g eg |
building | Verbundindex |
bvnumber | BV042419600 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184689271 (DE-599)BVBBV042419600 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0713-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03894nmm a2200625zcb4500</leader><controlfield tag="001">BV042419600</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461207139</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0713-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268789</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6878-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0713-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184689271</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419600</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Godlewski, Edwige</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Approximation of Hyperbolic Systems of Conservation Laws</subfield><subfield code="c">by Edwige Godlewski, Pierre-Arnaud Raviart</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 510 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied Mathematical Sciences</subfield><subfield code="v">118</subfield><subfield code="x">0066-5452</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This work is devoted to the theory and approximation of nonlinear hyper bolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors, and we shall make frequent references to Godlewski and Raviart (1991) (hereafter noted G. R. ), though the present volume can be read independently. This earlier publication, apart from a first chap ter, especially covered the scalar case. Thus, we shall detail here neither the mathematical theory of multidimensional scalar conservation laws nor their approximation in the one-dimensional case by finite-difference con servative schemes, both of which were treated in G. R. , but we shall mostly consider systems. The theory for systems is in fact much more difficult and not at all completed. This explains why we shall mainly concentrate on some theoretical aspects that are needed in the applications, such as the solution of the Riemann problem, with occasional insights into more sophisticated problems. The present book is divided into six chapters, including an introductory chapter. For the reader's convenience, we shall resume in this Introduction the notions that are necessary for a self-sufficient understanding of this book -the main definitions of hyperbolicity, weak solutions, and entropy present the practical examples that will be thoroughly developed in the following chapters, and recall the main results concerning the scalar case</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numeric Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares hyperbolisches System</subfield><subfield code="0">(DE-588)4191896-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineares hyperbolisches System</subfield><subfield code="0">(DE-588)4191896-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Raviart, Pierre-Arnaud</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0713-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855017</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419600 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461207139 9781461268789 |
issn | 0066-5452 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855017 |
oclc_num | 1184689271 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 510 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Springer New York |
record_format | marc |
series2 | Applied Mathematical Sciences |
spelling | Godlewski, Edwige Verfasser aut Numerical Approximation of Hyperbolic Systems of Conservation Laws by Edwige Godlewski, Pierre-Arnaud Raviart New York, NY Springer New York 1996 1 Online-Ressource (VIII, 510 p) txt rdacontent c rdamedia cr rdacarrier Applied Mathematical Sciences 118 0066-5452 This work is devoted to the theory and approximation of nonlinear hyper bolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors, and we shall make frequent references to Godlewski and Raviart (1991) (hereafter noted G. R. ), though the present volume can be read independently. This earlier publication, apart from a first chap ter, especially covered the scalar case. Thus, we shall detail here neither the mathematical theory of multidimensional scalar conservation laws nor their approximation in the one-dimensional case by finite-difference con servative schemes, both of which were treated in G. R. , but we shall mostly consider systems. The theory for systems is in fact much more difficult and not at all completed. This explains why we shall mainly concentrate on some theoretical aspects that are needed in the applications, such as the solution of the Riemann problem, with occasional insights into more sophisticated problems. The present book is divided into six chapters, including an introductory chapter. For the reader's convenience, we shall resume in this Introduction the notions that are necessary for a self-sufficient understanding of this book -the main definitions of hyperbolicity, weak solutions, and entropy present the practical examples that will be thoroughly developed in the following chapters, and recall the main results concerning the scalar case Mathematics Electronic data processing Numerical analysis Numerical Analysis Numerical and Computational Physics Numeric Computing Datenverarbeitung Mathematik Nichtlineares hyperbolisches System (DE-588)4191896-4 gnd rswk-swf Hyperbolisches System (DE-588)4191897-6 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 s Nichtlineares hyperbolisches System (DE-588)4191896-4 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Hyperbolisches System (DE-588)4191897-6 s 2\p DE-604 Raviart, Pierre-Arnaud Sonstige oth https://doi.org/10.1007/978-1-4612-0713-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Godlewski, Edwige Numerical Approximation of Hyperbolic Systems of Conservation Laws Mathematics Electronic data processing Numerical analysis Numerical Analysis Numerical and Computational Physics Numeric Computing Datenverarbeitung Mathematik Nichtlineares hyperbolisches System (DE-588)4191896-4 gnd Hyperbolisches System (DE-588)4191897-6 gnd Erhaltungssatz (DE-588)4131214-4 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4191896-4 (DE-588)4191897-6 (DE-588)4131214-4 (DE-588)4128130-5 |
title | Numerical Approximation of Hyperbolic Systems of Conservation Laws |
title_auth | Numerical Approximation of Hyperbolic Systems of Conservation Laws |
title_exact_search | Numerical Approximation of Hyperbolic Systems of Conservation Laws |
title_full | Numerical Approximation of Hyperbolic Systems of Conservation Laws by Edwige Godlewski, Pierre-Arnaud Raviart |
title_fullStr | Numerical Approximation of Hyperbolic Systems of Conservation Laws by Edwige Godlewski, Pierre-Arnaud Raviart |
title_full_unstemmed | Numerical Approximation of Hyperbolic Systems of Conservation Laws by Edwige Godlewski, Pierre-Arnaud Raviart |
title_short | Numerical Approximation of Hyperbolic Systems of Conservation Laws |
title_sort | numerical approximation of hyperbolic systems of conservation laws |
topic | Mathematics Electronic data processing Numerical analysis Numerical Analysis Numerical and Computational Physics Numeric Computing Datenverarbeitung Mathematik Nichtlineares hyperbolisches System (DE-588)4191896-4 gnd Hyperbolisches System (DE-588)4191897-6 gnd Erhaltungssatz (DE-588)4131214-4 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Mathematics Electronic data processing Numerical analysis Numerical Analysis Numerical and Computational Physics Numeric Computing Datenverarbeitung Mathematik Nichtlineares hyperbolisches System Hyperbolisches System Erhaltungssatz Numerisches Verfahren |
url | https://doi.org/10.1007/978-1-4612-0713-9 |
work_keys_str_mv | AT godlewskiedwige numericalapproximationofhyperbolicsystemsofconservationlaws AT raviartpierrearnaud numericalapproximationofhyperbolicsystemsofconservationlaws |