An Introduction to Measure and Probability:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1997
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Assuming only calculus and linear algebra, this book introduces the reader in a technically complete way to measure theory and probability, discrete martingales, and weak convergence. It is self- contained and rigorous with a tutorial approach that leads the reader to develop basic skills in analysis and probability. While the original goal was to bring discrete martingale theory to a wide readership, it has been extended so that the book also covers the basic topics of measure theory as well as giving an introduction to the Central Limit Theory and weak convergence. Students of pure mathematics and statistics can expect to acquire a sound introduction to basic measure theory and probability. A reader with a background in finance, business, or engineering should be able to acquire a technical understanding of discrete martingales in the equivalent of one semester. J. C. Taylor is a Professor in the Department of Mathematics and Statistics at McGill University in Montreal. He is the author of numerous articles on potential theory, both probabilistic and analytic, and is particularly interested in the potential theory of symmetric spaces |
Beschreibung: | 1 Online-Ressource (XVII, 324p. 12 illus) |
ISBN: | 9781461206590 9780387948300 |
DOI: | 10.1007/978-1-4612-0659-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419586 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9781461206590 |c Online |9 978-1-4612-0659-0 | ||
020 | |a 9780387948300 |c Print |9 978-0-387-94830-0 | ||
024 | 7 | |a 10.1007/978-1-4612-0659-0 |2 doi | |
035 | |a (OCoLC)863670026 | ||
035 | |a (DE-599)BVBBV042419586 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Taylor, J. C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a An Introduction to Measure and Probability |c by J. C. Taylor |
264 | 1 | |a New York, NY |b Springer New York |c 1997 | |
300 | |a 1 Online-Ressource (XVII, 324p. 12 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Assuming only calculus and linear algebra, this book introduces the reader in a technically complete way to measure theory and probability, discrete martingales, and weak convergence. It is self- contained and rigorous with a tutorial approach that leads the reader to develop basic skills in analysis and probability. While the original goal was to bring discrete martingale theory to a wide readership, it has been extended so that the book also covers the basic topics of measure theory as well as giving an introduction to the Central Limit Theory and weak convergence. Students of pure mathematics and statistics can expect to acquire a sound introduction to basic measure theory and probability. A reader with a background in finance, business, or engineering should be able to acquire a technical understanding of discrete martingales in the equivalent of one semester. J. C. Taylor is a Professor in the Department of Mathematics and Statistics at McGill University in Montreal. He is the author of numerous articles on potential theory, both probabilistic and analytic, and is particularly interested in the potential theory of symmetric spaces | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Real Functions | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0659-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855003 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090418409472 |
---|---|
any_adam_object | |
author | Taylor, J. C. |
author_facet | Taylor, J. C. |
author_role | aut |
author_sort | Taylor, J. C. |
author_variant | j c t jc jct |
building | Verbundindex |
bvnumber | BV042419586 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863670026 (DE-599)BVBBV042419586 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0659-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03096nmm a2200529zc 4500</leader><controlfield tag="001">BV042419586</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461206590</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0659-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387948300</subfield><subfield code="c">Print</subfield><subfield code="9">978-0-387-94830-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0659-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863670026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419586</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Taylor, J. C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Introduction to Measure and Probability</subfield><subfield code="c">by J. C. Taylor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 324p. 12 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Assuming only calculus and linear algebra, this book introduces the reader in a technically complete way to measure theory and probability, discrete martingales, and weak convergence. It is self- contained and rigorous with a tutorial approach that leads the reader to develop basic skills in analysis and probability. While the original goal was to bring discrete martingale theory to a wide readership, it has been extended so that the book also covers the basic topics of measure theory as well as giving an introduction to the Central Limit Theory and weak convergence. Students of pure mathematics and statistics can expect to acquire a sound introduction to basic measure theory and probability. A reader with a background in finance, business, or engineering should be able to acquire a technical understanding of discrete martingales in the equivalent of one semester. J. C. Taylor is a Professor in the Department of Mathematics and Statistics at McGill University in Montreal. He is the author of numerous articles on potential theory, both probabilistic and analytic, and is particularly interested in the potential theory of symmetric spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0659-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855003</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV042419586 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461206590 9780387948300 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855003 |
oclc_num | 863670026 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVII, 324p. 12 illus) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer New York |
record_format | marc |
spelling | Taylor, J. C. Verfasser aut An Introduction to Measure and Probability by J. C. Taylor New York, NY Springer New York 1997 1 Online-Ressource (XVII, 324p. 12 illus) txt rdacontent c rdamedia cr rdacarrier Assuming only calculus and linear algebra, this book introduces the reader in a technically complete way to measure theory and probability, discrete martingales, and weak convergence. It is self- contained and rigorous with a tutorial approach that leads the reader to develop basic skills in analysis and probability. While the original goal was to bring discrete martingale theory to a wide readership, it has been extended so that the book also covers the basic topics of measure theory as well as giving an introduction to the Central Limit Theory and weak convergence. Students of pure mathematics and statistics can expect to acquire a sound introduction to basic measure theory and probability. A reader with a background in finance, business, or engineering should be able to acquire a technical understanding of discrete martingales in the equivalent of one semester. J. C. Taylor is a Professor in the Department of Mathematics and Statistics at McGill University in Montreal. He is the author of numerous articles on potential theory, both probabilistic and analytic, and is particularly interested in the potential theory of symmetric spaces Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Real Functions Mathematik Maßtheorie (DE-588)4074626-4 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 2\p DE-604 Maßtheorie (DE-588)4074626-4 s 3\p DE-604 https://doi.org/10.1007/978-1-4612-0659-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Taylor, J. C. An Introduction to Measure and Probability Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Real Functions Mathematik Maßtheorie (DE-588)4074626-4 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd |
subject_GND | (DE-588)4074626-4 (DE-588)4064324-4 (DE-588)4151278-9 |
title | An Introduction to Measure and Probability |
title_auth | An Introduction to Measure and Probability |
title_exact_search | An Introduction to Measure and Probability |
title_full | An Introduction to Measure and Probability by J. C. Taylor |
title_fullStr | An Introduction to Measure and Probability by J. C. Taylor |
title_full_unstemmed | An Introduction to Measure and Probability by J. C. Taylor |
title_short | An Introduction to Measure and Probability |
title_sort | an introduction to measure and probability |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Real Functions Mathematik Maßtheorie (DE-588)4074626-4 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Real Functions Mathematik Maßtheorie Wahrscheinlichkeitsrechnung Einführung |
url | https://doi.org/10.1007/978-1-4612-0659-0 |
work_keys_str_mv | AT taylorjc anintroductiontomeasureandprobability |