Matrix Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1997
|
Schriftenreihe: | Graduate Texts in Mathematics
169 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and graduate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathematical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to acquire hard tools and then learn how to use them delicately. The reader is expected to be very thoroughly familiar with basic linear algebra. The standard texts Finite-Dimensional Vector Spaces by P.R. |
Beschreibung: | 1 Online-Ressource (XI, 349 p) |
ISBN: | 9781461206538 9781461268574 |
ISSN: | 0072-5285 |
DOI: | 10.1007/978-1-4612-0653-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419585 | ||
003 | DE-604 | ||
005 | 20210216 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9781461206538 |c Online |9 978-1-4612-0653-8 | ||
020 | |a 9781461268574 |c Print |9 978-1-4612-6857-4 | ||
024 | 7 | |a 10.1007/978-1-4612-0653-8 |2 doi | |
035 | |a (OCoLC)863759270 | ||
035 | |a (DE-599)BVBBV042419585 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bhatia, Rajendra |e Verfasser |4 aut | |
245 | 1 | 0 | |a Matrix Analysis |c by Rajendra Bhatia |
264 | 1 | |a New York, NY |b Springer New York |c 1997 | |
300 | |a 1 Online-Ressource (XI, 349 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Graduate Texts in Mathematics |v 169 |x 0072-5285 | |
500 | |a A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and graduate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathematical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to acquire hard tools and then learn how to use them delicately. The reader is expected to be very thoroughly familiar with basic linear algebra. The standard texts Finite-Dimensional Vector Spaces by P.R. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Matrizenanalysis |0 (DE-588)4227735-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operatortheorie |0 (DE-588)4075665-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matrizenanalysis |0 (DE-588)4227735-8 |D s |
689 | 0 | 1 | |a Operatortheorie |0 (DE-588)4075665-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Graduate Texts in Mathematics |v 169 |w (DE-604)BV035421258 |9 169 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0653-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027855002 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090415263744 |
---|---|
any_adam_object | |
author | Bhatia, Rajendra |
author_facet | Bhatia, Rajendra |
author_role | aut |
author_sort | Bhatia, Rajendra |
author_variant | r b rb |
building | Verbundindex |
bvnumber | BV042419585 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863759270 (DE-599)BVBBV042419585 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0653-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02986nmm a2200517zcb4500</leader><controlfield tag="001">BV042419585</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461206538</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0653-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268574</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6857-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0653-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863759270</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419585</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhatia, Rajendra</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix Analysis</subfield><subfield code="c">by Rajendra Bhatia</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 349 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">169</subfield><subfield code="x">0072-5285</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and graduate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathematical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to acquire hard tools and then learn how to use them delicately. The reader is expected to be very thoroughly familiar with basic linear algebra. The standard texts Finite-Dimensional Vector Spaces by P.R.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizenanalysis</subfield><subfield code="0">(DE-588)4227735-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrizenanalysis</subfield><subfield code="0">(DE-588)4227735-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Graduate Texts in Mathematics</subfield><subfield code="v">169</subfield><subfield code="w">(DE-604)BV035421258</subfield><subfield code="9">169</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0653-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027855002</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419585 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461206538 9781461268574 |
issn | 0072-5285 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027855002 |
oclc_num | 863759270 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 349 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Springer New York |
record_format | marc |
series | Graduate Texts in Mathematics |
series2 | Graduate Texts in Mathematics |
spelling | Bhatia, Rajendra Verfasser aut Matrix Analysis by Rajendra Bhatia New York, NY Springer New York 1997 1 Online-Ressource (XI, 349 p) txt rdacontent c rdamedia cr rdacarrier Graduate Texts in Mathematics 169 0072-5285 A good part of matrix theory is functional analytic in spirit. This statement can be turned around. There are many problems in operator theory, where most of the complexities and subtleties are present in the finite-dimensional case. My purpose in writing this book is to present a systematic treatment of methods that are useful in the study of such problems. This book is intended for use as a text for upper division and graduate courses. Courses based on parts of the material have been given by me at the Indian Statistical Institute and at the University of Toronto (in collaboration with Chandler Davis). The book should also be useful as a reference for research workers in linear algebra, operator theory, mathematical physics and numerical analysis. A possible subtitle of this book could be Matrix Inequalities. A reader who works through the book should expect to become proficient in the art of deriving such inequalities. Other authors have compared this art to that of cutting diamonds. One first has to acquire hard tools and then learn how to use them delicately. The reader is expected to be very thoroughly familiar with basic linear algebra. The standard texts Finite-Dimensional Vector Spaces by P.R. Mathematics Global analysis (Mathematics) Numerical analysis Analysis Numerical Analysis Mathematik Matrizenanalysis (DE-588)4227735-8 gnd rswk-swf Operatortheorie (DE-588)4075665-8 gnd rswk-swf Matrizenanalysis (DE-588)4227735-8 s Operatortheorie (DE-588)4075665-8 s 1\p DE-604 Graduate Texts in Mathematics 169 (DE-604)BV035421258 169 https://doi.org/10.1007/978-1-4612-0653-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bhatia, Rajendra Matrix Analysis Graduate Texts in Mathematics Mathematics Global analysis (Mathematics) Numerical analysis Analysis Numerical Analysis Mathematik Matrizenanalysis (DE-588)4227735-8 gnd Operatortheorie (DE-588)4075665-8 gnd |
subject_GND | (DE-588)4227735-8 (DE-588)4075665-8 |
title | Matrix Analysis |
title_auth | Matrix Analysis |
title_exact_search | Matrix Analysis |
title_full | Matrix Analysis by Rajendra Bhatia |
title_fullStr | Matrix Analysis by Rajendra Bhatia |
title_full_unstemmed | Matrix Analysis by Rajendra Bhatia |
title_short | Matrix Analysis |
title_sort | matrix analysis |
topic | Mathematics Global analysis (Mathematics) Numerical analysis Analysis Numerical Analysis Mathematik Matrizenanalysis (DE-588)4227735-8 gnd Operatortheorie (DE-588)4075665-8 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Numerical analysis Analysis Numerical Analysis Mathematik Matrizenanalysis Operatortheorie |
url | https://doi.org/10.1007/978-1-4612-0653-8 |
volume_link | (DE-604)BV035421258 |
work_keys_str_mv | AT bhatiarajendra matrixanalysis |