Bounded Queries in Recursion Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1999
|
Schriftenreihe: | Progress in Computer Science and Applied Logic
16 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | One of the major concerns of theoretical computer science is the classifi cation of problems in terms of how hard they are. The natural measure of difficulty of a function is the amount of time needed to compute it (as a function of the length of the input). Other resources, such as space, have also been considered. In recursion theory, by contrast, a function is considered to be easy to compute if there exists some algorithm that computes it. We wish to classify functions that are hard, i.e., not computable, in a quantitative way. We cannot use time or space, since the functions are not even computable. We cannot use Turing degree, since this notion is not quantitative. Hence we need a new notion of complexity-much like time or spac~that is quantitative and yet in some way captures the level of difficulty (such as the Turing degree) of a function |
Beschreibung: | 1 Online-Ressource (XIII, 353 p) |
ISBN: | 9781461206354 9781461268482 |
DOI: | 10.1007/978-1-4612-0635-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419580 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461206354 |c Online |9 978-1-4612-0635-4 | ||
020 | |a 9781461268482 |c Print |9 978-1-4612-6848-2 | ||
024 | 7 | |a 10.1007/978-1-4612-0635-4 |2 doi | |
035 | |a (OCoLC)1165511765 | ||
035 | |a (DE-599)BVBBV042419580 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 004.0151 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gasarch, William I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Bounded Queries in Recursion Theory |c by William I. Gasarch, Georgia A. Martin |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1999 | |
300 | |a 1 Online-Ressource (XIII, 353 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Computer Science and Applied Logic |v 16 | |
500 | |a One of the major concerns of theoretical computer science is the classifi cation of problems in terms of how hard they are. The natural measure of difficulty of a function is the amount of time needed to compute it (as a function of the length of the input). Other resources, such as space, have also been considered. In recursion theory, by contrast, a function is considered to be easy to compute if there exists some algorithm that computes it. We wish to classify functions that are hard, i.e., not computable, in a quantitative way. We cannot use time or space, since the functions are not even computable. We cannot use Turing degree, since this notion is not quantitative. Hence we need a new notion of complexity-much like time or spac~that is quantitative and yet in some way captures the level of difficulty (such as the Turing degree) of a function | ||
650 | 4 | |a Computer science | |
650 | 4 | |a Information theory | |
650 | 4 | |a Computational complexity | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Computer Science | |
650 | 4 | |a Math Applications in Computer Science | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Discrete Mathematics in Computer Science | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Rekursionstheorie |0 (DE-588)4122329-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Rekursionstheorie |0 (DE-588)4122329-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Martin, Georgia A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0635-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854997 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090408972288 |
---|---|
any_adam_object | |
author | Gasarch, William I. |
author_facet | Gasarch, William I. |
author_role | aut |
author_sort | Gasarch, William I. |
author_variant | w i g wi wig |
building | Verbundindex |
bvnumber | BV042419580 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165511765 (DE-599)BVBBV042419580 |
dewey-full | 004.0151 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.0151 |
dewey-search | 004.0151 |
dewey-sort | 14.0151 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-4612-0635-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02935nmm a2200601zcb4500</leader><controlfield tag="001">BV042419580</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461206354</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0635-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268482</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6848-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0635-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165511765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419580</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.0151</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gasarch, William I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bounded Queries in Recursion Theory</subfield><subfield code="c">by William I. Gasarch, Georgia A. Martin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 353 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Computer Science and Applied Logic</subfield><subfield code="v">16</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">One of the major concerns of theoretical computer science is the classifi cation of problems in terms of how hard they are. The natural measure of difficulty of a function is the amount of time needed to compute it (as a function of the length of the input). Other resources, such as space, have also been considered. In recursion theory, by contrast, a function is considered to be easy to compute if there exists some algorithm that computes it. We wish to classify functions that are hard, i.e., not computable, in a quantitative way. We cannot use time or space, since the functions are not even computable. We cannot use Turing degree, since this notion is not quantitative. Hence we need a new notion of complexity-much like time or spac~that is quantitative and yet in some way captures the level of difficulty (such as the Turing degree) of a function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Math Applications in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete Mathematics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rekursionstheorie</subfield><subfield code="0">(DE-588)4122329-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rekursionstheorie</subfield><subfield code="0">(DE-588)4122329-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martin, Georgia A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0635-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854997</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419580 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461206354 9781461268482 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854997 |
oclc_num | 1165511765 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 353 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Computer Science and Applied Logic |
spelling | Gasarch, William I. Verfasser aut Bounded Queries in Recursion Theory by William I. Gasarch, Georgia A. Martin Boston, MA Birkhäuser Boston 1999 1 Online-Ressource (XIII, 353 p) txt rdacontent c rdamedia cr rdacarrier Progress in Computer Science and Applied Logic 16 One of the major concerns of theoretical computer science is the classifi cation of problems in terms of how hard they are. The natural measure of difficulty of a function is the amount of time needed to compute it (as a function of the length of the input). Other resources, such as space, have also been considered. In recursion theory, by contrast, a function is considered to be easy to compute if there exists some algorithm that computes it. We wish to classify functions that are hard, i.e., not computable, in a quantitative way. We cannot use time or space, since the functions are not even computable. We cannot use Turing degree, since this notion is not quantitative. Hence we need a new notion of complexity-much like time or spac~that is quantitative and yet in some way captures the level of difficulty (such as the Turing degree) of a function Computer science Information theory Computational complexity Operator theory Mathematics Computer science / Mathematics Computer Science Math Applications in Computer Science Operator Theory Theory of Computation Discrete Mathematics in Computer Science Computational Mathematics and Numerical Analysis Applications of Mathematics Informatik Mathematik Rekursionstheorie (DE-588)4122329-9 gnd rswk-swf Rekursionstheorie (DE-588)4122329-9 s 1\p DE-604 Martin, Georgia A. Sonstige oth https://doi.org/10.1007/978-1-4612-0635-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gasarch, William I. Bounded Queries in Recursion Theory Computer science Information theory Computational complexity Operator theory Mathematics Computer science / Mathematics Computer Science Math Applications in Computer Science Operator Theory Theory of Computation Discrete Mathematics in Computer Science Computational Mathematics and Numerical Analysis Applications of Mathematics Informatik Mathematik Rekursionstheorie (DE-588)4122329-9 gnd |
subject_GND | (DE-588)4122329-9 |
title | Bounded Queries in Recursion Theory |
title_auth | Bounded Queries in Recursion Theory |
title_exact_search | Bounded Queries in Recursion Theory |
title_full | Bounded Queries in Recursion Theory by William I. Gasarch, Georgia A. Martin |
title_fullStr | Bounded Queries in Recursion Theory by William I. Gasarch, Georgia A. Martin |
title_full_unstemmed | Bounded Queries in Recursion Theory by William I. Gasarch, Georgia A. Martin |
title_short | Bounded Queries in Recursion Theory |
title_sort | bounded queries in recursion theory |
topic | Computer science Information theory Computational complexity Operator theory Mathematics Computer science / Mathematics Computer Science Math Applications in Computer Science Operator Theory Theory of Computation Discrete Mathematics in Computer Science Computational Mathematics and Numerical Analysis Applications of Mathematics Informatik Mathematik Rekursionstheorie (DE-588)4122329-9 gnd |
topic_facet | Computer science Information theory Computational complexity Operator theory Mathematics Computer science / Mathematics Computer Science Math Applications in Computer Science Operator Theory Theory of Computation Discrete Mathematics in Computer Science Computational Mathematics and Numerical Analysis Applications of Mathematics Informatik Mathematik Rekursionstheorie |
url | https://doi.org/10.1007/978-1-4612-0635-4 |
work_keys_str_mv | AT gasarchwilliami boundedqueriesinrecursiontheory AT martingeorgiaa boundedqueriesinrecursiontheory |