Wavelets Made Easy:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1999
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book, written at the level of a first course in calculus and linear algebra, offers a lucid and concise explanation of mathematical wavelets. Evolving from ten years of classroom use, its accessible presentation is designed for undergraduates in a variety of disciplines (computer science, engineering, mathematics, mathematical sciences) as well as for practising professionals in these areas. This unique text starts the first chapter with a description of the key features and applications of wavelets, focusing on Haar's wavelets but using only high school mathematics. The next two chapters introduce one-, two-, and three-dimensional wavelets, with only the occasional use of matrix algebra. The second part of this book provides the foundations of least squares approximation, the discrete Fourier transform, and Fourier series. The third part explains the Fourier transform and then demonstrates how to apply basic Fourier analysis to designing and analyzing mathematical wavelets. Particular attention is paid to Daubechies wavelets. Numerous exercises, a bibliography, and a comprehensive index combine to make this book an excellent text for the classroom as well as a valuable resource for self-study |
Beschreibung: | 1 Online-Ressource (XI, 297 p) |
ISBN: | 9781461205739 9781461268239 |
DOI: | 10.1007/978-1-4612-0573-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419559 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461205739 |c Online |9 978-1-4612-0573-9 | ||
020 | |a 9781461268239 |c Print |9 978-1-4612-6823-9 | ||
024 | 7 | |a 10.1007/978-1-4612-0573-9 |2 doi | |
035 | |a (OCoLC)863699654 | ||
035 | |a (DE-599)BVBBV042419559 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Nievergelt, Yves |e Verfasser |4 aut | |
245 | 1 | 0 | |a Wavelets Made Easy |c by Yves Nievergelt |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1999 | |
300 | |a 1 Online-Ressource (XI, 297 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This book, written at the level of a first course in calculus and linear algebra, offers a lucid and concise explanation of mathematical wavelets. Evolving from ten years of classroom use, its accessible presentation is designed for undergraduates in a variety of disciplines (computer science, engineering, mathematics, mathematical sciences) as well as for practising professionals in these areas. This unique text starts the first chapter with a description of the key features and applications of wavelets, focusing on Haar's wavelets but using only high school mathematics. The next two chapters introduce one-, two-, and three-dimensional wavelets, with only the occasional use of matrix algebra. The second part of this book provides the foundations of least squares approximation, the discrete Fourier transform, and Fourier series. The third part explains the Fourier transform and then demonstrates how to apply basic Fourier analysis to designing and analyzing mathematical wavelets. Particular attention is paid to Daubechies wavelets. Numerous exercises, a bibliography, and a comprehensive index combine to make this book an excellent text for the classroom as well as a valuable resource for self-study | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Computer engineering | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Electrical Engineering | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Wavelet |0 (DE-588)4215427-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0573-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854976 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090365980672 |
---|---|
any_adam_object | |
author | Nievergelt, Yves |
author_facet | Nievergelt, Yves |
author_role | aut |
author_sort | Nievergelt, Yves |
author_variant | y n yn |
building | Verbundindex |
bvnumber | BV042419559 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863699654 (DE-599)BVBBV042419559 |
dewey-full | 519 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519 |
dewey-search | 519 |
dewey-sort | 3519 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0573-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02758nmm a2200481zc 4500</leader><controlfield tag="001">BV042419559</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461205739</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0573-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268239</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6823-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0573-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863699654</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419559</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nievergelt, Yves</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Wavelets Made Easy</subfield><subfield code="c">by Yves Nievergelt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 297 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book, written at the level of a first course in calculus and linear algebra, offers a lucid and concise explanation of mathematical wavelets. Evolving from ten years of classroom use, its accessible presentation is designed for undergraduates in a variety of disciplines (computer science, engineering, mathematics, mathematical sciences) as well as for practising professionals in these areas. This unique text starts the first chapter with a description of the key features and applications of wavelets, focusing on Haar's wavelets but using only high school mathematics. The next two chapters introduce one-, two-, and three-dimensional wavelets, with only the occasional use of matrix algebra. The second part of this book provides the foundations of least squares approximation, the discrete Fourier transform, and Fourier series. The third part explains the Fourier transform and then demonstrates how to apply basic Fourier analysis to designing and analyzing mathematical wavelets. Particular attention is paid to Daubechies wavelets. Numerous exercises, a bibliography, and a comprehensive index combine to make this book an excellent text for the classroom as well as a valuable resource for self-study</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0573-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854976</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419559 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461205739 9781461268239 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854976 |
oclc_num | 863699654 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 297 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Nievergelt, Yves Verfasser aut Wavelets Made Easy by Yves Nievergelt Boston, MA Birkhäuser Boston 1999 1 Online-Ressource (XI, 297 p) txt rdacontent c rdamedia cr rdacarrier This book, written at the level of a first course in calculus and linear algebra, offers a lucid and concise explanation of mathematical wavelets. Evolving from ten years of classroom use, its accessible presentation is designed for undergraduates in a variety of disciplines (computer science, engineering, mathematics, mathematical sciences) as well as for practising professionals in these areas. This unique text starts the first chapter with a description of the key features and applications of wavelets, focusing on Haar's wavelets but using only high school mathematics. The next two chapters introduce one-, two-, and three-dimensional wavelets, with only the occasional use of matrix algebra. The second part of this book provides the foundations of least squares approximation, the discrete Fourier transform, and Fourier series. The third part explains the Fourier transform and then demonstrates how to apply basic Fourier analysis to designing and analyzing mathematical wavelets. Particular attention is paid to Daubechies wavelets. Numerous exercises, a bibliography, and a comprehensive index combine to make this book an excellent text for the classroom as well as a valuable resource for self-study Mathematics Functional analysis Computer engineering Applications of Mathematics Functional Analysis Electrical Engineering Mathematik Wavelet (DE-588)4215427-3 gnd rswk-swf Wavelet (DE-588)4215427-3 s 1\p DE-604 https://doi.org/10.1007/978-1-4612-0573-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nievergelt, Yves Wavelets Made Easy Mathematics Functional analysis Computer engineering Applications of Mathematics Functional Analysis Electrical Engineering Mathematik Wavelet (DE-588)4215427-3 gnd |
subject_GND | (DE-588)4215427-3 |
title | Wavelets Made Easy |
title_auth | Wavelets Made Easy |
title_exact_search | Wavelets Made Easy |
title_full | Wavelets Made Easy by Yves Nievergelt |
title_fullStr | Wavelets Made Easy by Yves Nievergelt |
title_full_unstemmed | Wavelets Made Easy by Yves Nievergelt |
title_short | Wavelets Made Easy |
title_sort | wavelets made easy |
topic | Mathematics Functional analysis Computer engineering Applications of Mathematics Functional Analysis Electrical Engineering Mathematik Wavelet (DE-588)4215427-3 gnd |
topic_facet | Mathematics Functional analysis Computer engineering Applications of Mathematics Functional Analysis Electrical Engineering Mathematik Wavelet |
url | https://doi.org/10.1007/978-1-4612-0573-9 |
work_keys_str_mv | AT nievergeltyves waveletsmadeeasy |