Further Topics on Discrete-Time Markov Control Processes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1999
|
Schriftenreihe: | Applications of Mathematics, Stochastic Modelling and Applied Probability
42 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book presents the second part of a two-volume series devoted to a sys tematic exposition of some recent developments in the theory of discrete time Markov control processes (MCPs). As in the first part, hereafter re ferred to as "Volume I" (see Hernandez-Lerma and Lasserre [1]), interest is mainly confined to MCPs with Borel state and control spaces, and possibly unbounded costs. However, an important feature of the present volume is that it is essentially self-contained and can be read independently of Volume I. The reason for this independence is that even though both volumes deal with similar classes of MCPs, the assumptions on the control models are usually different. For instance, Volume I deals only with nonnegative cost per-stage functions, whereas in the present volume we allow cost functions to take positive or negative values, as needed in some applications. Thus, many results in Volume Ion, say, discounted or average cost problems are not applicable to the models considered here. On the other hand, we now consider control models that typically re quire more restrictive classes of control-constraint sets and/or transition laws. This loss of generality is, of course, deliberate because it allows us to obtain more "precise" results. For example, in a very general context, in §4 |
Beschreibung: | 1 Online-Ressource (XIII, 277 p) |
ISBN: | 9781461205616 9781461268185 |
ISSN: | 0172-4568 |
DOI: | 10.1007/978-1-4612-0561-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419555 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461205616 |c Online |9 978-1-4612-0561-6 | ||
020 | |a 9781461268185 |c Print |9 978-1-4612-6818-5 | ||
024 | 7 | |a 10.1007/978-1-4612-0561-6 |2 doi | |
035 | |a (OCoLC)1165488026 | ||
035 | |a (DE-599)BVBBV042419555 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hernández-Lerma, Onésimo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Further Topics on Discrete-Time Markov Control Processes |c by Onésimo Hernández-Lerma, Jean Bernard Lasserre |
264 | 1 | |a New York, NY |b Springer New York |c 1999 | |
300 | |a 1 Online-Ressource (XIII, 277 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applications of Mathematics, Stochastic Modelling and Applied Probability |v 42 |x 0172-4568 | |
500 | |a This book presents the second part of a two-volume series devoted to a sys tematic exposition of some recent developments in the theory of discrete time Markov control processes (MCPs). As in the first part, hereafter re ferred to as "Volume I" (see Hernandez-Lerma and Lasserre [1]), interest is mainly confined to MCPs with Borel state and control spaces, and possibly unbounded costs. However, an important feature of the present volume is that it is essentially self-contained and can be read independently of Volume I. The reason for this independence is that even though both volumes deal with similar classes of MCPs, the assumptions on the control models are usually different. For instance, Volume I deals only with nonnegative cost per-stage functions, whereas in the present volume we allow cost functions to take positive or negative values, as needed in some applications. Thus, many results in Volume Ion, say, discounted or average cost problems are not applicable to the models considered here. On the other hand, we now consider control models that typically re quire more restrictive classes of control-constraint sets and/or transition laws. This loss of generality is, of course, deliberate because it allows us to obtain more "precise" results. For example, in a very general context, in §4 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Markov-Entscheidungsprozess |0 (DE-588)4168927-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diskreter Markov-Prozess |0 (DE-588)4150185-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Markov-Entscheidungsprozess |0 (DE-588)4168927-6 |D s |
689 | 0 | 1 | |a Diskreter Markov-Prozess |0 (DE-588)4150185-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Lasserre, Jean Bernard |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0561-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854972 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090349203456 |
---|---|
any_adam_object | |
author | Hernández-Lerma, Onésimo |
author_facet | Hernández-Lerma, Onésimo |
author_role | aut |
author_sort | Hernández-Lerma, Onésimo |
author_variant | o h l ohl |
building | Verbundindex |
bvnumber | BV042419555 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165488026 (DE-599)BVBBV042419555 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0561-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03205nmm a2200493zcb4500</leader><controlfield tag="001">BV042419555</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461205616</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0561-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268185</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6818-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0561-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165488026</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419555</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hernández-Lerma, Onésimo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Further Topics on Discrete-Time Markov Control Processes</subfield><subfield code="c">by Onésimo Hernández-Lerma, Jean Bernard Lasserre</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 277 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applications of Mathematics, Stochastic Modelling and Applied Probability</subfield><subfield code="v">42</subfield><subfield code="x">0172-4568</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents the second part of a two-volume series devoted to a sys tematic exposition of some recent developments in the theory of discrete time Markov control processes (MCPs). As in the first part, hereafter re ferred to as "Volume I" (see Hernandez-Lerma and Lasserre [1]), interest is mainly confined to MCPs with Borel state and control spaces, and possibly unbounded costs. However, an important feature of the present volume is that it is essentially self-contained and can be read independently of Volume I. The reason for this independence is that even though both volumes deal with similar classes of MCPs, the assumptions on the control models are usually different. For instance, Volume I deals only with nonnegative cost per-stage functions, whereas in the present volume we allow cost functions to take positive or negative values, as needed in some applications. Thus, many results in Volume Ion, say, discounted or average cost problems are not applicable to the models considered here. On the other hand, we now consider control models that typically re quire more restrictive classes of control-constraint sets and/or transition laws. This loss of generality is, of course, deliberate because it allows us to obtain more "precise" results. For example, in a very general context, in §4</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Markov-Entscheidungsprozess</subfield><subfield code="0">(DE-588)4168927-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskreter Markov-Prozess</subfield><subfield code="0">(DE-588)4150185-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Markov-Entscheidungsprozess</subfield><subfield code="0">(DE-588)4168927-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diskreter Markov-Prozess</subfield><subfield code="0">(DE-588)4150185-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lasserre, Jean Bernard</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0561-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854972</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419555 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461205616 9781461268185 |
issn | 0172-4568 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854972 |
oclc_num | 1165488026 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 277 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer New York |
record_format | marc |
series2 | Applications of Mathematics, Stochastic Modelling and Applied Probability |
spelling | Hernández-Lerma, Onésimo Verfasser aut Further Topics on Discrete-Time Markov Control Processes by Onésimo Hernández-Lerma, Jean Bernard Lasserre New York, NY Springer New York 1999 1 Online-Ressource (XIII, 277 p) txt rdacontent c rdamedia cr rdacarrier Applications of Mathematics, Stochastic Modelling and Applied Probability 42 0172-4568 This book presents the second part of a two-volume series devoted to a sys tematic exposition of some recent developments in the theory of discrete time Markov control processes (MCPs). As in the first part, hereafter re ferred to as "Volume I" (see Hernandez-Lerma and Lasserre [1]), interest is mainly confined to MCPs with Borel state and control spaces, and possibly unbounded costs. However, an important feature of the present volume is that it is essentially self-contained and can be read independently of Volume I. The reason for this independence is that even though both volumes deal with similar classes of MCPs, the assumptions on the control models are usually different. For instance, Volume I deals only with nonnegative cost per-stage functions, whereas in the present volume we allow cost functions to take positive or negative values, as needed in some applications. Thus, many results in Volume Ion, say, discounted or average cost problems are not applicable to the models considered here. On the other hand, we now consider control models that typically re quire more restrictive classes of control-constraint sets and/or transition laws. This loss of generality is, of course, deliberate because it allows us to obtain more "precise" results. For example, in a very general context, in §4 Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Markov-Entscheidungsprozess (DE-588)4168927-6 gnd rswk-swf Diskreter Markov-Prozess (DE-588)4150185-8 gnd rswk-swf Markov-Entscheidungsprozess (DE-588)4168927-6 s Diskreter Markov-Prozess (DE-588)4150185-8 s 1\p DE-604 Lasserre, Jean Bernard Sonstige oth https://doi.org/10.1007/978-1-4612-0561-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hernández-Lerma, Onésimo Further Topics on Discrete-Time Markov Control Processes Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Markov-Entscheidungsprozess (DE-588)4168927-6 gnd Diskreter Markov-Prozess (DE-588)4150185-8 gnd |
subject_GND | (DE-588)4168927-6 (DE-588)4150185-8 |
title | Further Topics on Discrete-Time Markov Control Processes |
title_auth | Further Topics on Discrete-Time Markov Control Processes |
title_exact_search | Further Topics on Discrete-Time Markov Control Processes |
title_full | Further Topics on Discrete-Time Markov Control Processes by Onésimo Hernández-Lerma, Jean Bernard Lasserre |
title_fullStr | Further Topics on Discrete-Time Markov Control Processes by Onésimo Hernández-Lerma, Jean Bernard Lasserre |
title_full_unstemmed | Further Topics on Discrete-Time Markov Control Processes by Onésimo Hernández-Lerma, Jean Bernard Lasserre |
title_short | Further Topics on Discrete-Time Markov Control Processes |
title_sort | further topics on discrete time markov control processes |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Markov-Entscheidungsprozess (DE-588)4168927-6 gnd Diskreter Markov-Prozess (DE-588)4150185-8 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Markov-Entscheidungsprozess Diskreter Markov-Prozess |
url | https://doi.org/10.1007/978-1-4612-0561-6 |
work_keys_str_mv | AT hernandezlermaonesimo furthertopicsondiscretetimemarkovcontrolprocesses AT lasserrejeanbernard furthertopicsondiscretetimemarkovcontrolprocesses |