Decoupling: From Dependence to Independence
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1999
|
Schriftenreihe: | Probability and its Applications, A Series of the Applied Probability Trust
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Decoupling theory provides a general framework for analyzing problems involving dependent random variables as if they were independent. It was born in the early eighties as a natural continuation of martingale theory and has acquired a life of its own due to vigorous development and wide applicability. The authors provide a friendly and systematic introduction to the theory and applications of decoupling. The book begins with a chapter on sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments which are later used to develop and interpret decoupling inequalities. Decoupling is first introduced as it applies in two specific areas, randomly stopped processes (boundary crossing problems) and unbiased estimation (U-- statistics and U--processes), where it has become a basic tool in obtaining several definitive results. In particular, decoupling is an essential component in the development of the asymptotic theory of U-- statistics and U--processes. The authors then proceed with the theory of decoupling in full generality. Special attention is given to comparison and interplay between martingale and decoupling theory, and to applications. Among other results, the applications include limit theorems, momemt and exponential inequalities for martingales and more general dependence structures, results with biostatistical implications, and moment convergence in Anscombe's theorem and Wald's equation for U--statistics. This book is addressed to researchers in probability and statistics and to graduate students. The expositon is at the level of a second graduate probability course, with a good portion of the material fit for use in a first year course. Victor de la Pe$a is Associate Professor of Statistics at Columbia University and is one of the more active developers of decoupling |
Beschreibung: | 1 Online-Ressource (XV, 392 p) |
ISBN: | 9781461205371 9781461268086 |
ISSN: | 1431-7028 |
DOI: | 10.1007/978-1-4612-0537-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419548 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781461205371 |c Online |9 978-1-4612-0537-1 | ||
020 | |a 9781461268086 |c Print |9 978-1-4612-6808-6 | ||
024 | 7 | |a 10.1007/978-1-4612-0537-1 |2 doi | |
035 | |a (OCoLC)1184274329 | ||
035 | |a (DE-599)BVBBV042419548 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Peña, Víctor H. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Decoupling |b From Dependence to Independence |c by Víctor H. Peña, Evarist Giné |
246 | 1 | 3 | |a Randomly Stopped Processes U-Statistics and Processes Martingales and Beyond |
264 | 1 | |a New York, NY |b Springer New York |c 1999 | |
300 | |a 1 Online-Ressource (XV, 392 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Probability and its Applications, A Series of the Applied Probability Trust |x 1431-7028 | |
500 | |a Decoupling theory provides a general framework for analyzing problems involving dependent random variables as if they were independent. It was born in the early eighties as a natural continuation of martingale theory and has acquired a life of its own due to vigorous development and wide applicability. The authors provide a friendly and systematic introduction to the theory and applications of decoupling. The book begins with a chapter on sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments which are later used to develop and interpret decoupling inequalities. Decoupling is first introduced as it applies in two specific areas, randomly stopped processes (boundary crossing problems) and unbiased estimation (U-- statistics and U--processes), where it has become a basic tool in obtaining several definitive results. In particular, decoupling is an essential component in the development of the asymptotic theory of U-- statistics and U--processes. The authors then proceed with the theory of decoupling in full generality. Special attention is given to comparison and interplay between martingale and decoupling theory, and to applications. Among other results, the applications include limit theorems, momemt and exponential inequalities for martingales and more general dependence structures, results with biostatistical implications, and moment convergence in Anscombe's theorem and Wald's equation for U--statistics. This book is addressed to researchers in probability and statistics and to graduate students. The expositon is at the level of a second graduate probability course, with a good portion of the material fit for use in a first year course. Victor de la Pe$a is Associate Professor of Statistics at Columbia University and is one of the more active developers of decoupling | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Statistics | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Statistics, general | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Statistik | |
650 | 0 | 7 | |a U-Stichprobenfunktion |0 (DE-588)4279548-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimales Stoppen |0 (DE-588)4230259-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Abhängigkeit |0 (DE-588)4220425-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unabhängige Zufallsvariable |0 (DE-588)4205983-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Martingal |0 (DE-588)4126466-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Optimales Stoppen |0 (DE-588)4230259-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a U-Stichprobenfunktion |0 (DE-588)4279548-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Martingal |0 (DE-588)4126466-6 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Unabhängige Zufallsvariable |0 (DE-588)4205983-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Stochastische Abhängigkeit |0 (DE-588)4220425-2 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
700 | 1 | |a Giné, Evarist |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0537-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854965 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090335571968 |
---|---|
any_adam_object | |
author | Peña, Víctor H. |
author_facet | Peña, Víctor H. |
author_role | aut |
author_sort | Peña, Víctor H. |
author_variant | v h p vh vhp |
building | Verbundindex |
bvnumber | BV042419548 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184274329 (DE-599)BVBBV042419548 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0537-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04952nmm a2200757zc 4500</leader><controlfield tag="001">BV042419548</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461205371</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0537-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461268086</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6808-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0537-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184274329</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419548</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Peña, Víctor H.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Decoupling</subfield><subfield code="b">From Dependence to Independence</subfield><subfield code="c">by Víctor H. Peña, Evarist Giné</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Randomly Stopped Processes U-Statistics and Processes Martingales and Beyond</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 392 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Probability and its Applications, A Series of the Applied Probability Trust</subfield><subfield code="x">1431-7028</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Decoupling theory provides a general framework for analyzing problems involving dependent random variables as if they were independent. It was born in the early eighties as a natural continuation of martingale theory and has acquired a life of its own due to vigorous development and wide applicability. The authors provide a friendly and systematic introduction to the theory and applications of decoupling. The book begins with a chapter on sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments which are later used to develop and interpret decoupling inequalities. Decoupling is first introduced as it applies in two specific areas, randomly stopped processes (boundary crossing problems) and unbiased estimation (U-- statistics and U--processes), where it has become a basic tool in obtaining several definitive results. In particular, decoupling is an essential component in the development of the asymptotic theory of U-- statistics and U--processes. The authors then proceed with the theory of decoupling in full generality. Special attention is given to comparison and interplay between martingale and decoupling theory, and to applications. Among other results, the applications include limit theorems, momemt and exponential inequalities for martingales and more general dependence structures, results with biostatistical implications, and moment convergence in Anscombe's theorem and Wald's equation for U--statistics. This book is addressed to researchers in probability and statistics and to graduate students. The expositon is at the level of a second graduate probability course, with a good portion of the material fit for use in a first year course. Victor de la Pe$a is Associate Professor of Statistics at Columbia University and is one of the more active developers of decoupling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">U-Stichprobenfunktion</subfield><subfield code="0">(DE-588)4279548-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimales Stoppen</subfield><subfield code="0">(DE-588)4230259-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Abhängigkeit</subfield><subfield code="0">(DE-588)4220425-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unabhängige Zufallsvariable</subfield><subfield code="0">(DE-588)4205983-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optimales Stoppen</subfield><subfield code="0">(DE-588)4230259-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">U-Stichprobenfunktion</subfield><subfield code="0">(DE-588)4279548-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Martingal</subfield><subfield code="0">(DE-588)4126466-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Unabhängige Zufallsvariable</subfield><subfield code="0">(DE-588)4205983-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Stochastische Abhängigkeit</subfield><subfield code="0">(DE-588)4220425-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giné, Evarist</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0537-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854965</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419548 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461205371 9781461268086 |
issn | 1431-7028 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854965 |
oclc_num | 1184274329 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 392 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer New York |
record_format | marc |
series2 | Probability and its Applications, A Series of the Applied Probability Trust |
spelling | Peña, Víctor H. Verfasser aut Decoupling From Dependence to Independence by Víctor H. Peña, Evarist Giné Randomly Stopped Processes U-Statistics and Processes Martingales and Beyond New York, NY Springer New York 1999 1 Online-Ressource (XV, 392 p) txt rdacontent c rdamedia cr rdacarrier Probability and its Applications, A Series of the Applied Probability Trust 1431-7028 Decoupling theory provides a general framework for analyzing problems involving dependent random variables as if they were independent. It was born in the early eighties as a natural continuation of martingale theory and has acquired a life of its own due to vigorous development and wide applicability. The authors provide a friendly and systematic introduction to the theory and applications of decoupling. The book begins with a chapter on sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments which are later used to develop and interpret decoupling inequalities. Decoupling is first introduced as it applies in two specific areas, randomly stopped processes (boundary crossing problems) and unbiased estimation (U-- statistics and U--processes), where it has become a basic tool in obtaining several definitive results. In particular, decoupling is an essential component in the development of the asymptotic theory of U-- statistics and U--processes. The authors then proceed with the theory of decoupling in full generality. Special attention is given to comparison and interplay between martingale and decoupling theory, and to applications. Among other results, the applications include limit theorems, momemt and exponential inequalities for martingales and more general dependence structures, results with biostatistical implications, and moment convergence in Anscombe's theorem and Wald's equation for U--statistics. This book is addressed to researchers in probability and statistics and to graduate students. The expositon is at the level of a second graduate probability course, with a good portion of the material fit for use in a first year course. Victor de la Pe$a is Associate Professor of Statistics at Columbia University and is one of the more active developers of decoupling Mathematics Distribution (Probability theory) Statistics Probability Theory and Stochastic Processes Statistics, general Mathematik Statistik U-Stichprobenfunktion (DE-588)4279548-5 gnd rswk-swf Optimales Stoppen (DE-588)4230259-6 gnd rswk-swf Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Stochastische Abhängigkeit (DE-588)4220425-2 gnd rswk-swf Unabhängige Zufallsvariable (DE-588)4205983-5 gnd rswk-swf Martingal (DE-588)4126466-6 gnd rswk-swf Optimales Stoppen (DE-588)4230259-6 s 1\p DE-604 U-Stichprobenfunktion (DE-588)4279548-5 s 2\p DE-604 Martingal (DE-588)4126466-6 s 3\p DE-604 Unabhängige Zufallsvariable (DE-588)4205983-5 s 4\p DE-604 Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 5\p DE-604 Stochastische Abhängigkeit (DE-588)4220425-2 s 6\p DE-604 Giné, Evarist Sonstige oth https://doi.org/10.1007/978-1-4612-0537-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Peña, Víctor H. Decoupling From Dependence to Independence Mathematics Distribution (Probability theory) Statistics Probability Theory and Stochastic Processes Statistics, general Mathematik Statistik U-Stichprobenfunktion (DE-588)4279548-5 gnd Optimales Stoppen (DE-588)4230259-6 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Stochastische Abhängigkeit (DE-588)4220425-2 gnd Unabhängige Zufallsvariable (DE-588)4205983-5 gnd Martingal (DE-588)4126466-6 gnd |
subject_GND | (DE-588)4279548-5 (DE-588)4230259-6 (DE-588)4064324-4 (DE-588)4220425-2 (DE-588)4205983-5 (DE-588)4126466-6 |
title | Decoupling From Dependence to Independence |
title_alt | Randomly Stopped Processes U-Statistics and Processes Martingales and Beyond |
title_auth | Decoupling From Dependence to Independence |
title_exact_search | Decoupling From Dependence to Independence |
title_full | Decoupling From Dependence to Independence by Víctor H. Peña, Evarist Giné |
title_fullStr | Decoupling From Dependence to Independence by Víctor H. Peña, Evarist Giné |
title_full_unstemmed | Decoupling From Dependence to Independence by Víctor H. Peña, Evarist Giné |
title_short | Decoupling |
title_sort | decoupling from dependence to independence |
title_sub | From Dependence to Independence |
topic | Mathematics Distribution (Probability theory) Statistics Probability Theory and Stochastic Processes Statistics, general Mathematik Statistik U-Stichprobenfunktion (DE-588)4279548-5 gnd Optimales Stoppen (DE-588)4230259-6 gnd Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Stochastische Abhängigkeit (DE-588)4220425-2 gnd Unabhängige Zufallsvariable (DE-588)4205983-5 gnd Martingal (DE-588)4126466-6 gnd |
topic_facet | Mathematics Distribution (Probability theory) Statistics Probability Theory and Stochastic Processes Statistics, general Mathematik Statistik U-Stichprobenfunktion Optimales Stoppen Wahrscheinlichkeitsrechnung Stochastische Abhängigkeit Unabhängige Zufallsvariable Martingal |
url | https://doi.org/10.1007/978-1-4612-0537-1 |
work_keys_str_mv | AT penavictorh decouplingfromdependencetoindependence AT gineevarist decouplingfromdependencetoindependence AT penavictorh randomlystoppedprocessesustatisticsandprocessesmartingalesandbeyond AT gineevarist randomlystoppedprocessesustatisticsandprocessesmartingalesandbeyond |