A Proof Theory for General Unification:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1991
|
Schriftenreihe: | Progress in Computer Science and Applied Logic
11 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In this monograph we study two generalizations of standard unification, E-unification and higher-order unification, using an abstract approach orig inated by Herbrand and developed in the case of standard first-order unifi cation by Martelli and Montanari. The formalism presents the unification computation as a set of non-deterministic transformation rules for con verting a set of equations to be unified into an explicit representation of a unifier (if such exists). This provides an abstract and mathematically elegant means of analysing the properties of unification in various settings by providing a clean separation of the logical issues from the specification of procedural information, and amounts to a set of 'inference rules' for unification, hence the title of this book. We derive the set of transformations for general E-unification and higher order unification from an analysis of the sense in which terms are 'the same' after application of a unifying substitution. In both cases, this results in a simple extension of the set of basic transformations given by Herbrand Martelli-Montanari for standard unification, and shows clearly the basic relationships of the fundamental operations necessary in each case, and thus the underlying structure of the most important classes of term unifi cation problems |
Beschreibung: | 1 Online-Ressource (VII, 178 p) |
ISBN: | 9781461204350 9781461267584 |
DOI: | 10.1007/978-1-4612-0435-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419528 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1991 |||| o||u| ||||||eng d | ||
020 | |a 9781461204350 |c Online |9 978-1-4612-0435-0 | ||
020 | |a 9781461267584 |c Print |9 978-1-4612-6758-4 | ||
024 | 7 | |a 10.1007/978-1-4612-0435-0 |2 doi | |
035 | |a (OCoLC)869864324 | ||
035 | |a (DE-599)BVBBV042419528 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 004.0151 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Snyder, Wayne |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Proof Theory for General Unification |c by Wayne Snyder |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1991 | |
300 | |a 1 Online-Ressource (VII, 178 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Computer Science and Applied Logic |v 11 | |
500 | |a In this monograph we study two generalizations of standard unification, E-unification and higher-order unification, using an abstract approach orig inated by Herbrand and developed in the case of standard first-order unifi cation by Martelli and Montanari. The formalism presents the unification computation as a set of non-deterministic transformation rules for con verting a set of equations to be unified into an explicit representation of a unifier (if such exists). This provides an abstract and mathematically elegant means of analysing the properties of unification in various settings by providing a clean separation of the logical issues from the specification of procedural information, and amounts to a set of 'inference rules' for unification, hence the title of this book. We derive the set of transformations for general E-unification and higher order unification from an analysis of the sense in which terms are 'the same' after application of a unifying substitution. In both cases, this results in a simple extension of the set of basic transformations given by Herbrand Martelli-Montanari for standard unification, and shows clearly the basic relationships of the fundamental operations necessary in each case, and thus the underlying structure of the most important classes of term unifi cation problems | ||
650 | 4 | |a Computer science | |
650 | 4 | |a Information theory | |
650 | 4 | |a Logic, Symbolic and mathematical | |
650 | 4 | |a Computer Science | |
650 | 4 | |a Theory of Computation | |
650 | 4 | |a Mathematical Logic and Foundations | |
650 | 4 | |a Informatik | |
650 | 0 | 7 | |a Unifikationstheorie |0 (DE-588)4186894-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automatisches Beweisverfahren |0 (DE-588)4069034-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beweistheorie |0 (DE-588)4145177-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Unifikationstheorie |0 (DE-588)4186894-8 |D s |
689 | 0 | 1 | |a Beweistheorie |0 (DE-588)4145177-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Automatisches Beweisverfahren |0 (DE-588)4069034-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0435-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854945 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090307260416 |
---|---|
any_adam_object | |
author | Snyder, Wayne |
author_facet | Snyder, Wayne |
author_role | aut |
author_sort | Snyder, Wayne |
author_variant | w s ws |
building | Verbundindex |
bvnumber | BV042419528 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869864324 (DE-599)BVBBV042419528 |
dewey-full | 004.0151 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004.0151 |
dewey-search | 004.0151 |
dewey-sort | 14.0151 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-4612-0435-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03387nmm a2200565zcb4500</leader><controlfield tag="001">BV042419528</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461204350</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0435-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461267584</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6758-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0435-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869864324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419528</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004.0151</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Snyder, Wayne</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Proof Theory for General Unification</subfield><subfield code="c">by Wayne Snyder</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 178 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Computer Science and Applied Logic</subfield><subfield code="v">11</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In this monograph we study two generalizations of standard unification, E-unification and higher-order unification, using an abstract approach orig inated by Herbrand and developed in the case of standard first-order unifi cation by Martelli and Montanari. The formalism presents the unification computation as a set of non-deterministic transformation rules for con verting a set of equations to be unified into an explicit representation of a unifier (if such exists). This provides an abstract and mathematically elegant means of analysing the properties of unification in various settings by providing a clean separation of the logical issues from the specification of procedural information, and amounts to a set of 'inference rules' for unification, hence the title of this book. We derive the set of transformations for general E-unification and higher order unification from an analysis of the sense in which terms are 'the same' after application of a unifying substitution. In both cases, this results in a simple extension of the set of basic transformations given by Herbrand Martelli-Montanari for standard unification, and shows clearly the basic relationships of the fundamental operations necessary in each case, and thus the underlying structure of the most important classes of term unifi cation problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theory of Computation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unifikationstheorie</subfield><subfield code="0">(DE-588)4186894-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatisches Beweisverfahren</subfield><subfield code="0">(DE-588)4069034-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unifikationstheorie</subfield><subfield code="0">(DE-588)4186894-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Beweistheorie</subfield><subfield code="0">(DE-588)4145177-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Automatisches Beweisverfahren</subfield><subfield code="0">(DE-588)4069034-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0435-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854945</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419528 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461204350 9781461267584 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854945 |
oclc_num | 869864324 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 178 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Computer Science and Applied Logic |
spelling | Snyder, Wayne Verfasser aut A Proof Theory for General Unification by Wayne Snyder Boston, MA Birkhäuser Boston 1991 1 Online-Ressource (VII, 178 p) txt rdacontent c rdamedia cr rdacarrier Progress in Computer Science and Applied Logic 11 In this monograph we study two generalizations of standard unification, E-unification and higher-order unification, using an abstract approach orig inated by Herbrand and developed in the case of standard first-order unifi cation by Martelli and Montanari. The formalism presents the unification computation as a set of non-deterministic transformation rules for con verting a set of equations to be unified into an explicit representation of a unifier (if such exists). This provides an abstract and mathematically elegant means of analysing the properties of unification in various settings by providing a clean separation of the logical issues from the specification of procedural information, and amounts to a set of 'inference rules' for unification, hence the title of this book. We derive the set of transformations for general E-unification and higher order unification from an analysis of the sense in which terms are 'the same' after application of a unifying substitution. In both cases, this results in a simple extension of the set of basic transformations given by Herbrand Martelli-Montanari for standard unification, and shows clearly the basic relationships of the fundamental operations necessary in each case, and thus the underlying structure of the most important classes of term unifi cation problems Computer science Information theory Logic, Symbolic and mathematical Computer Science Theory of Computation Mathematical Logic and Foundations Informatik Unifikationstheorie (DE-588)4186894-8 gnd rswk-swf Automatisches Beweisverfahren (DE-588)4069034-9 gnd rswk-swf Beweistheorie (DE-588)4145177-6 gnd rswk-swf Unifikationstheorie (DE-588)4186894-8 s Beweistheorie (DE-588)4145177-6 s 1\p DE-604 Automatisches Beweisverfahren (DE-588)4069034-9 s 2\p DE-604 https://doi.org/10.1007/978-1-4612-0435-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Snyder, Wayne A Proof Theory for General Unification Computer science Information theory Logic, Symbolic and mathematical Computer Science Theory of Computation Mathematical Logic and Foundations Informatik Unifikationstheorie (DE-588)4186894-8 gnd Automatisches Beweisverfahren (DE-588)4069034-9 gnd Beweistheorie (DE-588)4145177-6 gnd |
subject_GND | (DE-588)4186894-8 (DE-588)4069034-9 (DE-588)4145177-6 |
title | A Proof Theory for General Unification |
title_auth | A Proof Theory for General Unification |
title_exact_search | A Proof Theory for General Unification |
title_full | A Proof Theory for General Unification by Wayne Snyder |
title_fullStr | A Proof Theory for General Unification by Wayne Snyder |
title_full_unstemmed | A Proof Theory for General Unification by Wayne Snyder |
title_short | A Proof Theory for General Unification |
title_sort | a proof theory for general unification |
topic | Computer science Information theory Logic, Symbolic and mathematical Computer Science Theory of Computation Mathematical Logic and Foundations Informatik Unifikationstheorie (DE-588)4186894-8 gnd Automatisches Beweisverfahren (DE-588)4069034-9 gnd Beweistheorie (DE-588)4145177-6 gnd |
topic_facet | Computer science Information theory Logic, Symbolic and mathematical Computer Science Theory of Computation Mathematical Logic and Foundations Informatik Unifikationstheorie Automatisches Beweisverfahren Beweistheorie |
url | https://doi.org/10.1007/978-1-4612-0435-0 |
work_keys_str_mv | AT snyderwayne aprooftheoryforgeneralunification |