Nonlinear Diffusion Equations and Their Equilibrium States, 3: Proceedings from a Conference held August 20–29, 1989 in Gregynog, Wales
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1992
|
Schriftenreihe: | Progress in Nonlinear Differential Equations and Their Applications
7 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Nonlinear diffusion equations have held a prominent place in the theory of partial differential equations, both for the challenging and deep mathematical questions posed by such equations and the important role they play in many areas of science and technology. Examples of current interest are biological and chemical pattern formation, semiconductor design, environmental problems such as solute transport in groundwater flow, phase transitions and combustion theory. Central to the theory is the equation Ut = ~cp(U) + f(u). Here ~ denotes the n-dimensional Laplacian, cp and f are given functions and the solution is defined on some domain n x [0, T] in space-time. Fundamental questions concern the existence, uniqueness and regularity of solutions, the existence of interfaces or free boundaries, the question as to whether or not the solution can be continued for all time, the asymptotic behavior, both in time and space, and the development of singularities, for instance when the solution ceases to exist after finite time, either through extinction or through blow up |
Beschreibung: | 1 Online-Ressource (X, 572 p) |
ISBN: | 9781461203933 9781461267416 |
DOI: | 10.1007/978-1-4612-0393-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419523 | ||
003 | DE-604 | ||
005 | 20210526 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9781461203933 |c Online |9 978-1-4612-0393-3 | ||
020 | |a 9781461267416 |c Print |9 978-1-4612-6741-6 | ||
024 | 7 | |a 10.1007/978-1-4612-0393-3 |2 doi | |
035 | |a (OCoLC)863683365 | ||
035 | |a (DE-599)BVBBV042419523 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Lloyd, N. G. |4 edt | |
245 | 1 | 0 | |a Nonlinear Diffusion Equations and Their Equilibrium States, 3 |b Proceedings from a Conference held August 20–29, 1989 in Gregynog, Wales |c edited by N. G. Lloyd, W. M. Ni, L. A. Peletier, J. Serrin |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1992 | |
300 | |a 1 Online-Ressource (X, 572 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Nonlinear Differential Equations and Their Applications |v 7 | |
500 | |a Nonlinear diffusion equations have held a prominent place in the theory of partial differential equations, both for the challenging and deep mathematical questions posed by such equations and the important role they play in many areas of science and technology. Examples of current interest are biological and chemical pattern formation, semiconductor design, environmental problems such as solute transport in groundwater flow, phase transitions and combustion theory. Central to the theory is the equation Ut = ~cp(U) + f(u). Here ~ denotes the n-dimensional Laplacian, cp and f are given functions and the solution is defined on some domain n x [0, T] in space-time. Fundamental questions concern the existence, uniqueness and regularity of solutions, the existence of interfaces or free boundaries, the question as to whether or not the solution can be continued for all time, the asymptotic behavior, both in time and space, and the development of singularities, for instance when the solution ceases to exist after finite time, either through extinction or through blow up | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differentiable dynamical systems | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Dynamical Systems and Ergodic Theory | |
650 | 4 | |a Mathematik | |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
700 | 1 | |a Ni, W. M. |4 edt | |
700 | 1 | |a Peletier, L. A. |4 edt | |
700 | 1 | |a Serrin, J. |4 edt | |
830 | 0 | |a Progress in Nonlinear Differential Equations and Their Applications |v 7 |w (DE-604)BV036582883 |9 7 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0393-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854940 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090290483200 |
---|---|
any_adam_object | |
author2 | Lloyd, N. G. Ni, W. M. Peletier, L. A. Serrin, J. |
author2_role | edt edt edt edt |
author2_variant | n g l ng ngl w m n wm wmn l a p la lap j s js |
author_facet | Lloyd, N. G. Ni, W. M. Peletier, L. A. Serrin, J. |
building | Verbundindex |
bvnumber | BV042419523 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863683365 (DE-599)BVBBV042419523 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0393-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03095nmm a2200529zcb4500</leader><controlfield tag="001">BV042419523</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210526 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461203933</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0393-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461267416</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6741-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0393-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863683365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419523</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lloyd, N. G.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Diffusion Equations and Their Equilibrium States, 3</subfield><subfield code="b">Proceedings from a Conference held August 20–29, 1989 in Gregynog, Wales</subfield><subfield code="c">edited by N. G. Lloyd, W. M. Ni, L. A. Peletier, J. Serrin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 572 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">7</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Nonlinear diffusion equations have held a prominent place in the theory of partial differential equations, both for the challenging and deep mathematical questions posed by such equations and the important role they play in many areas of science and technology. Examples of current interest are biological and chemical pattern formation, semiconductor design, environmental problems such as solute transport in groundwater flow, phase transitions and combustion theory. Central to the theory is the equation Ut = ~cp(U) + f(u). Here ~ denotes the n-dimensional Laplacian, cp and f are given functions and the solution is defined on some domain n x [0, T] in space-time. Fundamental questions concern the existence, uniqueness and regularity of solutions, the existence of interfaces or free boundaries, the question as to whether or not the solution can be continued for all time, the asymptotic behavior, both in time and space, and the development of singularities, for instance when the solution ceases to exist after finite time, either through extinction or through blow up</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differentiable dynamical systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamical Systems and Ergodic Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ni, W. M.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peletier, L. A.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Serrin, J.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">7</subfield><subfield code="w">(DE-604)BV036582883</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0393-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854940</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV042419523 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461203933 9781461267416 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854940 |
oclc_num | 863683365 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 572 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Nonlinear Differential Equations and Their Applications |
series2 | Progress in Nonlinear Differential Equations and Their Applications |
spelling | Lloyd, N. G. edt Nonlinear Diffusion Equations and Their Equilibrium States, 3 Proceedings from a Conference held August 20–29, 1989 in Gregynog, Wales edited by N. G. Lloyd, W. M. Ni, L. A. Peletier, J. Serrin Boston, MA Birkhäuser Boston 1992 1 Online-Ressource (X, 572 p) txt rdacontent c rdamedia cr rdacarrier Progress in Nonlinear Differential Equations and Their Applications 7 Nonlinear diffusion equations have held a prominent place in the theory of partial differential equations, both for the challenging and deep mathematical questions posed by such equations and the important role they play in many areas of science and technology. Examples of current interest are biological and chemical pattern formation, semiconductor design, environmental problems such as solute transport in groundwater flow, phase transitions and combustion theory. Central to the theory is the equation Ut = ~cp(U) + f(u). Here ~ denotes the n-dimensional Laplacian, cp and f are given functions and the solution is defined on some domain n x [0, T] in space-time. Fundamental questions concern the existence, uniqueness and regularity of solutions, the existence of interfaces or free boundaries, the question as to whether or not the solution can be continued for all time, the asymptotic behavior, both in time and space, and the development of singularities, for instance when the solution ceases to exist after finite time, either through extinction or through blow up Mathematics Differentiable dynamical systems Differential Equations Differential equations, partial Partial Differential Equations Ordinary Differential Equations Dynamical Systems and Ergodic Theory Mathematik 1\p (DE-588)1071861417 Konferenzschrift gnd-content Ni, W. M. edt Peletier, L. A. edt Serrin, J. edt Progress in Nonlinear Differential Equations and Their Applications 7 (DE-604)BV036582883 7 https://doi.org/10.1007/978-1-4612-0393-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Nonlinear Diffusion Equations and Their Equilibrium States, 3 Proceedings from a Conference held August 20–29, 1989 in Gregynog, Wales Progress in Nonlinear Differential Equations and Their Applications Mathematics Differentiable dynamical systems Differential Equations Differential equations, partial Partial Differential Equations Ordinary Differential Equations Dynamical Systems and Ergodic Theory Mathematik |
subject_GND | (DE-588)1071861417 |
title | Nonlinear Diffusion Equations and Their Equilibrium States, 3 Proceedings from a Conference held August 20–29, 1989 in Gregynog, Wales |
title_auth | Nonlinear Diffusion Equations and Their Equilibrium States, 3 Proceedings from a Conference held August 20–29, 1989 in Gregynog, Wales |
title_exact_search | Nonlinear Diffusion Equations and Their Equilibrium States, 3 Proceedings from a Conference held August 20–29, 1989 in Gregynog, Wales |
title_full | Nonlinear Diffusion Equations and Their Equilibrium States, 3 Proceedings from a Conference held August 20–29, 1989 in Gregynog, Wales edited by N. G. Lloyd, W. M. Ni, L. A. Peletier, J. Serrin |
title_fullStr | Nonlinear Diffusion Equations and Their Equilibrium States, 3 Proceedings from a Conference held August 20–29, 1989 in Gregynog, Wales edited by N. G. Lloyd, W. M. Ni, L. A. Peletier, J. Serrin |
title_full_unstemmed | Nonlinear Diffusion Equations and Their Equilibrium States, 3 Proceedings from a Conference held August 20–29, 1989 in Gregynog, Wales edited by N. G. Lloyd, W. M. Ni, L. A. Peletier, J. Serrin |
title_short | Nonlinear Diffusion Equations and Their Equilibrium States, 3 |
title_sort | nonlinear diffusion equations and their equilibrium states 3 proceedings from a conference held august 20 29 1989 in gregynog wales |
title_sub | Proceedings from a Conference held August 20–29, 1989 in Gregynog, Wales |
topic | Mathematics Differentiable dynamical systems Differential Equations Differential equations, partial Partial Differential Equations Ordinary Differential Equations Dynamical Systems and Ergodic Theory Mathematik |
topic_facet | Mathematics Differentiable dynamical systems Differential Equations Differential equations, partial Partial Differential Equations Ordinary Differential Equations Dynamical Systems and Ergodic Theory Mathematik Konferenzschrift |
url | https://doi.org/10.1007/978-1-4612-0393-3 |
volume_link | (DE-604)BV036582883 |
work_keys_str_mv | AT lloydng nonlineardiffusionequationsandtheirequilibriumstates3proceedingsfromaconferenceheldaugust20291989ingregynogwales AT niwm nonlineardiffusionequationsandtheirequilibriumstates3proceedingsfromaconferenceheldaugust20291989ingregynogwales AT peletierla nonlineardiffusionequationsandtheirequilibriumstates3proceedingsfromaconferenceheldaugust20291989ingregynogwales AT serrinj nonlineardiffusionequationsandtheirequilibriumstates3proceedingsfromaconferenceheldaugust20291989ingregynogwales |