The Langlands Classification and Irreducible Characters for Real Reductive Groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1992
|
Schriftenreihe: | Progress in Mathematics
104 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. In the case of real groups, the predicted parametrizations of representations was proved by Langlands himself. Unfortunately, most of the deeper relations suggested by the p-adic theory (between real representation theory and geometry on the space of real Langlands parameters) are not true. The purposed of this book is to redefine the space of real Langlands parameters so as to recover these relationships; informally, to do "Kazhdan-Lusztig theory on the dual group". The new definitions differ from the classical ones in roughly the same way that Deligne's definition of a Hodge structure differs from the classical one. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms |
Beschreibung: | 1 Online-Ressource (XII, 320 p) |
ISBN: | 9781461203834 9781461267362 |
DOI: | 10.1007/978-1-4612-0383-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419519 | ||
003 | DE-604 | ||
005 | 20180314 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9781461203834 |c Online |9 978-1-4612-0383-4 | ||
020 | |a 9781461267362 |c Print |9 978-1-4612-6736-2 | ||
024 | 7 | |a 10.1007/978-1-4612-0383-4 |2 doi | |
035 | |a (OCoLC)863715462 | ||
035 | |a (DE-599)BVBBV042419519 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Adams, Jeffrey |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Langlands Classification and Irreducible Characters for Real Reductive Groups |c by Jeffrey Adams, Dan Barbasch, David A. Vogan |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1992 | |
300 | |a 1 Online-Ressource (XII, 320 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 104 | |
500 | |a This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. In the case of real groups, the predicted parametrizations of representations was proved by Langlands himself. Unfortunately, most of the deeper relations suggested by the p-adic theory (between real representation theory and geometry on the space of real Langlands parameters) are not true. The purposed of this book is to redefine the space of real Langlands parameters so as to recover these relationships; informally, to do "Kazhdan-Lusztig theory on the dual group". The new definitions differ from the classical ones in roughly the same way that Deligne's definition of a Hodge structure differs from the classical one. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Group theory | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Associative Rings and Algebras | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Unitäre Darstellung |0 (DE-588)4186906-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lokale Langlands-Vermutung |0 (DE-588)4211641-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Irreduzible Darstellung |0 (DE-588)4162430-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Langlands-Klassifizierung |0 (DE-588)4211640-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |D s |
689 | 0 | 1 | |a Irreduzible Darstellung |0 (DE-588)4162430-0 |D s |
689 | 0 | 2 | |a Langlands-Klassifizierung |0 (DE-588)4211640-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Langlands-Klassifizierung |0 (DE-588)4211640-5 |D s |
689 | 1 | 1 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |D s |
689 | 1 | 2 | |a Unitäre Darstellung |0 (DE-588)4186906-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Lokale Langlands-Vermutung |0 (DE-588)4211641-7 |D s |
689 | 2 | 1 | |a Reduktive Gruppe |0 (DE-588)4177313-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
700 | 1 | |a Barbasch, Dan |e Sonstige |4 oth | |
700 | 1 | |a Vogan, David A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0383-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854936 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090289434624 |
---|---|
any_adam_object | |
author | Adams, Jeffrey |
author_facet | Adams, Jeffrey |
author_role | aut |
author_sort | Adams, Jeffrey |
author_variant | j a ja |
building | Verbundindex |
bvnumber | BV042419519 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863715462 (DE-599)BVBBV042419519 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0383-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04569nmm a2200781zcb4500</leader><controlfield tag="001">BV042419519</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180314 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461203834</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0383-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461267362</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6736-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0383-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863715462</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419519</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adams, Jeffrey</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Langlands Classification and Irreducible Characters for Real Reductive Groups</subfield><subfield code="c">by Jeffrey Adams, Dan Barbasch, David A. Vogan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 320 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">104</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. In the case of real groups, the predicted parametrizations of representations was proved by Langlands himself. Unfortunately, most of the deeper relations suggested by the p-adic theory (between real representation theory and geometry on the space of real Langlands parameters) are not true. The purposed of this book is to redefine the space of real Langlands parameters so as to recover these relationships; informally, to do "Kazhdan-Lusztig theory on the dual group". The new definitions differ from the classical ones in roughly the same way that Deligne's definition of a Hodge structure differs from the classical one. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unitäre Darstellung</subfield><subfield code="0">(DE-588)4186906-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokale Langlands-Vermutung</subfield><subfield code="0">(DE-588)4211641-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Irreduzible Darstellung</subfield><subfield code="0">(DE-588)4162430-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Langlands-Klassifizierung</subfield><subfield code="0">(DE-588)4211640-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Irreduzible Darstellung</subfield><subfield code="0">(DE-588)4162430-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Langlands-Klassifizierung</subfield><subfield code="0">(DE-588)4211640-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Langlands-Klassifizierung</subfield><subfield code="0">(DE-588)4211640-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Unitäre Darstellung</subfield><subfield code="0">(DE-588)4186906-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lokale Langlands-Vermutung</subfield><subfield code="0">(DE-588)4211641-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Reduktive Gruppe</subfield><subfield code="0">(DE-588)4177313-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barbasch, Dan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vogan, David A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0383-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854936</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419519 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:05Z |
institution | BVB |
isbn | 9781461203834 9781461267362 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854936 |
oclc_num | 863715462 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 320 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Adams, Jeffrey Verfasser aut The Langlands Classification and Irreducible Characters for Real Reductive Groups by Jeffrey Adams, Dan Barbasch, David A. Vogan Boston, MA Birkhäuser Boston 1992 1 Online-Ressource (XII, 320 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 104 This monograph explores the geometry of the local Langlands conjecture. The conjecture predicts a parametrizations of the irreducible representations of a reductive algebraic group over a local field in terms of the complex dual group and the Weil-Deligne group. For p-adic fields, this conjecture has not been proved; but it has been refined to a detailed collection of (conjectural) relationships between p-adic representation theory and geometry on the space of p-adic representation theory and geometry on the space of p-adic Langlands parameters. In the case of real groups, the predicted parametrizations of representations was proved by Langlands himself. Unfortunately, most of the deeper relations suggested by the p-adic theory (between real representation theory and geometry on the space of real Langlands parameters) are not true. The purposed of this book is to redefine the space of real Langlands parameters so as to recover these relationships; informally, to do "Kazhdan-Lusztig theory on the dual group". The new definitions differ from the classical ones in roughly the same way that Deligne's definition of a Hodge structure differs from the classical one. This book provides and introduction to some modern geometric methods in representation theory. It is addressed to graduate students and research workers in representation theory and in automorphic forms Mathematics Algebra Group theory Group Theory and Generalizations Associative Rings and Algebras Mathematik Unitäre Darstellung (DE-588)4186906-0 gnd rswk-swf Lokale Langlands-Vermutung (DE-588)4211641-7 gnd rswk-swf Reduktive Gruppe (DE-588)4177313-5 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Irreduzible Darstellung (DE-588)4162430-0 gnd rswk-swf Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Langlands-Klassifizierung (DE-588)4211640-5 gnd rswk-swf Reduktive Gruppe (DE-588)4177313-5 s Irreduzible Darstellung (DE-588)4162430-0 s Langlands-Klassifizierung (DE-588)4211640-5 s 1\p DE-604 Unitäre Darstellung (DE-588)4186906-0 s 2\p DE-604 Lokale Langlands-Vermutung (DE-588)4211641-7 s 3\p DE-604 Darstellungstheorie (DE-588)4148816-7 s 4\p DE-604 Algebraische Geometrie (DE-588)4001161-6 s 5\p DE-604 Barbasch, Dan Sonstige oth Vogan, David A. Sonstige oth https://doi.org/10.1007/978-1-4612-0383-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Adams, Jeffrey The Langlands Classification and Irreducible Characters for Real Reductive Groups Mathematics Algebra Group theory Group Theory and Generalizations Associative Rings and Algebras Mathematik Unitäre Darstellung (DE-588)4186906-0 gnd Lokale Langlands-Vermutung (DE-588)4211641-7 gnd Reduktive Gruppe (DE-588)4177313-5 gnd Darstellungstheorie (DE-588)4148816-7 gnd Irreduzible Darstellung (DE-588)4162430-0 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Langlands-Klassifizierung (DE-588)4211640-5 gnd |
subject_GND | (DE-588)4186906-0 (DE-588)4211641-7 (DE-588)4177313-5 (DE-588)4148816-7 (DE-588)4162430-0 (DE-588)4001161-6 (DE-588)4211640-5 |
title | The Langlands Classification and Irreducible Characters for Real Reductive Groups |
title_auth | The Langlands Classification and Irreducible Characters for Real Reductive Groups |
title_exact_search | The Langlands Classification and Irreducible Characters for Real Reductive Groups |
title_full | The Langlands Classification and Irreducible Characters for Real Reductive Groups by Jeffrey Adams, Dan Barbasch, David A. Vogan |
title_fullStr | The Langlands Classification and Irreducible Characters for Real Reductive Groups by Jeffrey Adams, Dan Barbasch, David A. Vogan |
title_full_unstemmed | The Langlands Classification and Irreducible Characters for Real Reductive Groups by Jeffrey Adams, Dan Barbasch, David A. Vogan |
title_short | The Langlands Classification and Irreducible Characters for Real Reductive Groups |
title_sort | the langlands classification and irreducible characters for real reductive groups |
topic | Mathematics Algebra Group theory Group Theory and Generalizations Associative Rings and Algebras Mathematik Unitäre Darstellung (DE-588)4186906-0 gnd Lokale Langlands-Vermutung (DE-588)4211641-7 gnd Reduktive Gruppe (DE-588)4177313-5 gnd Darstellungstheorie (DE-588)4148816-7 gnd Irreduzible Darstellung (DE-588)4162430-0 gnd Algebraische Geometrie (DE-588)4001161-6 gnd Langlands-Klassifizierung (DE-588)4211640-5 gnd |
topic_facet | Mathematics Algebra Group theory Group Theory and Generalizations Associative Rings and Algebras Mathematik Unitäre Darstellung Lokale Langlands-Vermutung Reduktive Gruppe Darstellungstheorie Irreduzible Darstellung Algebraische Geometrie Langlands-Klassifizierung |
url | https://doi.org/10.1007/978-1-4612-0383-4 |
work_keys_str_mv | AT adamsjeffrey thelanglandsclassificationandirreduciblecharactersforrealreductivegroups AT barbaschdan thelanglandsclassificationandirreduciblecharactersforrealreductivegroups AT vogandavida thelanglandsclassificationandirreduciblecharactersforrealreductivegroups |