Prime Numbers and Computer Methods for Factorization:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
1994
|
Ausgabe: | Second Edition |
Schriftenreihe: | Progress in Mathematics
126 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the modern age of almost universal computer usage, practically every individual in a technologically developed society has routine access to the most up-to-date cryptographic technology that exists, the so-called RSA public-key cryptosystem. A major component of this system is the factorization of large numbers into their primes. Thus an ancient number-theory concept now plays a crucial role in communication among millions of people who may have little or no knowledge of even elementary mathematics. Hans Riesel’s highly successful first edition of this book has now been enlarged and updated with the goal of satisfying the needs of researchers, students, practitioners of cryptography, and non-scientific readers with a mathematical inclination. It includes important advances in computational prime number theory and in factorization as well as re-computed and enlarged tables, accompanied by new tables reflecting current research by both the author and his coworkers and by independent researchers. The book treats four fundamental problems: the number of primes below a given limit, the approximate number of primes, the recognition of primes and the factorization of large numbers. The author provides explicit algorithms and computer programs, and has attempted to discuss as many of the classically important results as possible, as well as the most recent discoveries. The programs include are written in PASCAL to allow readers to translate the programs into the language of their own computers. The independent structure of each chapter of the book makes it highly readable for a wide variety of mathematicians, students of applied number theory, and others interested in both study and research in number theory and cryptography |
Beschreibung: | 1 Online-Ressource (XVI, 464 p) |
ISBN: | 9781461202516 9781461266815 |
DOI: | 10.1007/978-1-4612-0251-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419484 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9781461202516 |c Online |9 978-1-4612-0251-6 | ||
020 | |a 9781461266815 |c Print |9 978-1-4612-6681-5 | ||
024 | 7 | |a 10.1007/978-1-4612-0251-6 |2 doi | |
035 | |a (OCoLC)1165511764 | ||
035 | |a (DE-599)BVBBV042419484 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.7 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Riesel, Hans |e Verfasser |4 aut | |
245 | 1 | 0 | |a Prime Numbers and Computer Methods for Factorization |c by Hans Riesel |
250 | |a Second Edition | ||
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 1994 | |
300 | |a 1 Online-Ressource (XVI, 464 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 126 | |
500 | |a In the modern age of almost universal computer usage, practically every individual in a technologically developed society has routine access to the most up-to-date cryptographic technology that exists, the so-called RSA public-key cryptosystem. A major component of this system is the factorization of large numbers into their primes. Thus an ancient number-theory concept now plays a crucial role in communication among millions of people who may have little or no knowledge of even elementary mathematics. Hans Riesel’s highly successful first edition of this book has now been enlarged and updated with the goal of satisfying the needs of researchers, students, practitioners of cryptography, and non-scientific readers with a mathematical inclination. It includes important advances in computational prime number theory and in factorization as well as re-computed and enlarged tables, accompanied by new tables reflecting current research by both the author and his coworkers and by independent researchers. The book treats four fundamental problems: the number of primes below a given limit, the approximate number of primes, the recognition of primes and the factorization of large numbers. The author provides explicit algorithms and computer programs, and has attempted to discuss as many of the classically important results as possible, as well as the most recent discoveries. The programs include are written in PASCAL to allow readers to translate the programs into the language of their own computers. The independent structure of each chapter of the book makes it highly readable for a wide variety of mathematicians, students of applied number theory, and others interested in both study and research in number theory and cryptography | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Number theory | |
650 | 4 | |a Number Theory | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Datenverarbeitung |0 (DE-588)4011152-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Faktorisierung |0 (DE-588)4128927-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Primzahlzerlegung |0 (DE-588)4175717-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Primzahl |0 (DE-588)4047263-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computerunterstütztes Verfahren |0 (DE-588)4139030-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a PASCAL |g Programmiersprache |0 (DE-588)4044804-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algorithmus |0 (DE-588)4001183-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Primzahlverteilung |0 (DE-588)4175716-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Primzahl |0 (DE-588)4047263-2 |D s |
689 | 0 | 1 | |a Faktorisierung |0 (DE-588)4128927-4 |D s |
689 | 0 | 2 | |a Computerunterstütztes Verfahren |0 (DE-588)4139030-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Primzahlzerlegung |0 (DE-588)4175717-8 |D s |
689 | 1 | 1 | |a Computerunterstütztes Verfahren |0 (DE-588)4139030-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Primzahlverteilung |0 (DE-588)4175716-6 |D s |
689 | 2 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Faktorisierung |0 (DE-588)4128927-4 |D s |
689 | 3 | 1 | |a Algorithmus |0 (DE-588)4001183-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Primzahl |0 (DE-588)4047263-2 |D s |
689 | 4 | 1 | |a PASCAL |g Programmiersprache |0 (DE-588)4044804-6 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Faktorisierung |0 (DE-588)4128927-4 |D s |
689 | 5 | 1 | |a Datenverarbeitung |0 (DE-588)4011152-0 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0251-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854901 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090201354240 |
---|---|
any_adam_object | |
author | Riesel, Hans |
author_facet | Riesel, Hans |
author_role | aut |
author_sort | Riesel, Hans |
author_variant | h r hr |
building | Verbundindex |
bvnumber | BV042419484 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165511764 (DE-599)BVBBV042419484 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0251-6 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05151nmm a2200853zcb4500</leader><controlfield tag="001">BV042419484</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461202516</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0251-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461266815</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6681-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0251-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165511764</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419484</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Riesel, Hans</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Prime Numbers and Computer Methods for Factorization</subfield><subfield code="c">by Hans Riesel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 464 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">126</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the modern age of almost universal computer usage, practically every individual in a technologically developed society has routine access to the most up-to-date cryptographic technology that exists, the so-called RSA public-key cryptosystem. A major component of this system is the factorization of large numbers into their primes. Thus an ancient number-theory concept now plays a crucial role in communication among millions of people who may have little or no knowledge of even elementary mathematics. Hans Riesel’s highly successful first edition of this book has now been enlarged and updated with the goal of satisfying the needs of researchers, students, practitioners of cryptography, and non-scientific readers with a mathematical inclination. It includes important advances in computational prime number theory and in factorization as well as re-computed and enlarged tables, accompanied by new tables reflecting current research by both the author and his coworkers and by independent researchers. The book treats four fundamental problems: the number of primes below a given limit, the approximate number of primes, the recognition of primes and the factorization of large numbers. The author provides explicit algorithms and computer programs, and has attempted to discuss as many of the classically important results as possible, as well as the most recent discoveries. The programs include are written in PASCAL to allow readers to translate the programs into the language of their own computers. The independent structure of each chapter of the book makes it highly readable for a wide variety of mathematicians, students of applied number theory, and others interested in both study and research in number theory and cryptography</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faktorisierung</subfield><subfield code="0">(DE-588)4128927-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Primzahlzerlegung</subfield><subfield code="0">(DE-588)4175717-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Primzahl</subfield><subfield code="0">(DE-588)4047263-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computerunterstütztes Verfahren</subfield><subfield code="0">(DE-588)4139030-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">PASCAL</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4044804-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Primzahlverteilung</subfield><subfield code="0">(DE-588)4175716-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Primzahl</subfield><subfield code="0">(DE-588)4047263-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Faktorisierung</subfield><subfield code="0">(DE-588)4128927-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Computerunterstütztes Verfahren</subfield><subfield code="0">(DE-588)4139030-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Primzahlzerlegung</subfield><subfield code="0">(DE-588)4175717-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Computerunterstütztes Verfahren</subfield><subfield code="0">(DE-588)4139030-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Primzahlverteilung</subfield><subfield code="0">(DE-588)4175716-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Faktorisierung</subfield><subfield code="0">(DE-588)4128927-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Algorithmus</subfield><subfield code="0">(DE-588)4001183-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Primzahl</subfield><subfield code="0">(DE-588)4047263-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">PASCAL</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4044804-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Faktorisierung</subfield><subfield code="0">(DE-588)4128927-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Datenverarbeitung</subfield><subfield code="0">(DE-588)4011152-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0251-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854901</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419484 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781461202516 9781461266815 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854901 |
oclc_num | 1165511764 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 464 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Riesel, Hans Verfasser aut Prime Numbers and Computer Methods for Factorization by Hans Riesel Second Edition Boston, MA Birkhäuser Boston 1994 1 Online-Ressource (XVI, 464 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 126 In the modern age of almost universal computer usage, practically every individual in a technologically developed society has routine access to the most up-to-date cryptographic technology that exists, the so-called RSA public-key cryptosystem. A major component of this system is the factorization of large numbers into their primes. Thus an ancient number-theory concept now plays a crucial role in communication among millions of people who may have little or no knowledge of even elementary mathematics. Hans Riesel’s highly successful first edition of this book has now been enlarged and updated with the goal of satisfying the needs of researchers, students, practitioners of cryptography, and non-scientific readers with a mathematical inclination. It includes important advances in computational prime number theory and in factorization as well as re-computed and enlarged tables, accompanied by new tables reflecting current research by both the author and his coworkers and by independent researchers. The book treats four fundamental problems: the number of primes below a given limit, the approximate number of primes, the recognition of primes and the factorization of large numbers. The author provides explicit algorithms and computer programs, and has attempted to discuss as many of the classically important results as possible, as well as the most recent discoveries. The programs include are written in PASCAL to allow readers to translate the programs into the language of their own computers. The independent structure of each chapter of the book makes it highly readable for a wide variety of mathematicians, students of applied number theory, and others interested in both study and research in number theory and cryptography Mathematics Computer science / Mathematics Number theory Number Theory Computational Mathematics and Numerical Analysis Informatik Mathematik Datenverarbeitung (DE-588)4011152-0 gnd rswk-swf Faktorisierung (DE-588)4128927-4 gnd rswk-swf Primzahlzerlegung (DE-588)4175717-8 gnd rswk-swf Primzahl (DE-588)4047263-2 gnd rswk-swf Computerunterstütztes Verfahren (DE-588)4139030-1 gnd rswk-swf PASCAL Programmiersprache (DE-588)4044804-6 gnd rswk-swf Algorithmus (DE-588)4001183-5 gnd rswk-swf Primzahlverteilung (DE-588)4175716-6 gnd rswk-swf Primzahl (DE-588)4047263-2 s Faktorisierung (DE-588)4128927-4 s Computerunterstütztes Verfahren (DE-588)4139030-1 s 1\p DE-604 Primzahlzerlegung (DE-588)4175717-8 s 2\p DE-604 Primzahlverteilung (DE-588)4175716-6 s Algorithmus (DE-588)4001183-5 s 3\p DE-604 4\p DE-604 PASCAL Programmiersprache (DE-588)4044804-6 s 5\p DE-604 Datenverarbeitung (DE-588)4011152-0 s 6\p DE-604 https://doi.org/10.1007/978-1-4612-0251-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Riesel, Hans Prime Numbers and Computer Methods for Factorization Mathematics Computer science / Mathematics Number theory Number Theory Computational Mathematics and Numerical Analysis Informatik Mathematik Datenverarbeitung (DE-588)4011152-0 gnd Faktorisierung (DE-588)4128927-4 gnd Primzahlzerlegung (DE-588)4175717-8 gnd Primzahl (DE-588)4047263-2 gnd Computerunterstütztes Verfahren (DE-588)4139030-1 gnd PASCAL Programmiersprache (DE-588)4044804-6 gnd Algorithmus (DE-588)4001183-5 gnd Primzahlverteilung (DE-588)4175716-6 gnd |
subject_GND | (DE-588)4011152-0 (DE-588)4128927-4 (DE-588)4175717-8 (DE-588)4047263-2 (DE-588)4139030-1 (DE-588)4044804-6 (DE-588)4001183-5 (DE-588)4175716-6 |
title | Prime Numbers and Computer Methods for Factorization |
title_auth | Prime Numbers and Computer Methods for Factorization |
title_exact_search | Prime Numbers and Computer Methods for Factorization |
title_full | Prime Numbers and Computer Methods for Factorization by Hans Riesel |
title_fullStr | Prime Numbers and Computer Methods for Factorization by Hans Riesel |
title_full_unstemmed | Prime Numbers and Computer Methods for Factorization by Hans Riesel |
title_short | Prime Numbers and Computer Methods for Factorization |
title_sort | prime numbers and computer methods for factorization |
topic | Mathematics Computer science / Mathematics Number theory Number Theory Computational Mathematics and Numerical Analysis Informatik Mathematik Datenverarbeitung (DE-588)4011152-0 gnd Faktorisierung (DE-588)4128927-4 gnd Primzahlzerlegung (DE-588)4175717-8 gnd Primzahl (DE-588)4047263-2 gnd Computerunterstütztes Verfahren (DE-588)4139030-1 gnd PASCAL Programmiersprache (DE-588)4044804-6 gnd Algorithmus (DE-588)4001183-5 gnd Primzahlverteilung (DE-588)4175716-6 gnd |
topic_facet | Mathematics Computer science / Mathematics Number theory Number Theory Computational Mathematics and Numerical Analysis Informatik Mathematik Datenverarbeitung Faktorisierung Primzahlzerlegung Primzahl Computerunterstütztes Verfahren PASCAL Programmiersprache Algorithmus Primzahlverteilung |
url | https://doi.org/10.1007/978-1-4612-0251-6 |
work_keys_str_mv | AT rieselhans primenumbersandcomputermethodsforfactorization |