Advances in the Theory of Shock Waves:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2001
|
Schriftenreihe: | Progress in Nonlinear Differential Equations and Their Applications
47 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | In the field known as "the mathematical theory of shock waves," very exciting and unexpected developments have occurred in the last few years. Joel Smoller and Blake Temple have established classes of shock wave solutions to the Einstein Euler equations of general relativity; indeed, the mathematical and physical con sequences of these examples constitute a whole new area of research. The stability theory of "viscous" shock waves has received a new, geometric perspective due to the work of Kevin Zumbrun and collaborators, which offers a spectral approach to systems. Due to the intersection of point and essential spectrum, such an ap proach had for a long time seemed out of reach. The stability problem for "in viscid" shock waves has been given a novel, clear and concise treatment by Guy Metivier and coworkers through the use of paradifferential calculus. The L 1 semi group theory for systems of conservation laws, itself still a recent development, has been considerably condensed by the introduction of new distance functionals through Tai-Ping Liu and collaborators; these functionals compare solutions to different data by direct reference to their wave structure. The fundamental prop erties of systems with relaxation have found a systematic description through the papers of Wen-An Yong; for shock waves, this means a first general theorem on the existence of corresponding profiles. The five articles of this book reflect the above developments |
Beschreibung: | 1 Online-Ressource (VIII, 520 p) |
ISBN: | 9781461201939 9781461266556 |
DOI: | 10.1007/978-1-4612-0193-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419475 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781461201939 |c Online |9 978-1-4612-0193-9 | ||
020 | |a 9781461266556 |c Print |9 978-1-4612-6655-6 | ||
024 | 7 | |a 10.1007/978-1-4612-0193-9 |2 doi | |
035 | |a (OCoLC)1184277695 | ||
035 | |a (DE-599)BVBBV042419475 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Liu, Tai-Ping |e Verfasser |4 aut | |
245 | 1 | 0 | |a Advances in the Theory of Shock Waves |c by Tai-Ping Liu, Guy Métivier, Joel Smoller, Blake Temple, Wen-An Yong, Kevin Zumbrun ; edited by Heinrich Freistühler, Anders Szepessy |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2001 | |
300 | |a 1 Online-Ressource (VIII, 520 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Nonlinear Differential Equations and Their Applications |v 47 | |
500 | |a In the field known as "the mathematical theory of shock waves," very exciting and unexpected developments have occurred in the last few years. Joel Smoller and Blake Temple have established classes of shock wave solutions to the Einstein Euler equations of general relativity; indeed, the mathematical and physical con sequences of these examples constitute a whole new area of research. The stability theory of "viscous" shock waves has received a new, geometric perspective due to the work of Kevin Zumbrun and collaborators, which offers a spectral approach to systems. Due to the intersection of point and essential spectrum, such an ap proach had for a long time seemed out of reach. The stability problem for "in viscid" shock waves has been given a novel, clear and concise treatment by Guy Metivier and coworkers through the use of paradifferential calculus. The L 1 semi group theory for systems of conservation laws, itself still a recent development, has been considerably condensed by the introduction of new distance functionals through Tai-Ping Liu and collaborators; these functionals compare solutions to different data by direct reference to their wave structure. The fundamental prop erties of systems with relaxation have found a systematic description through the papers of Wen-An Yong; for shock waves, this means a first general theorem on the existence of corresponding profiles. The five articles of this book reflect the above developments | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Mathematical physics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematical Methods in Physics | |
650 | 4 | |a Classical and Quantum Gravitation, Relativity Theory | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematische Physik | |
650 | 0 | 7 | |a Stoßwelle |0 (DE-588)4057760-0 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Stoßwelle |0 (DE-588)4057760-0 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Métivier, Guy |e Sonstige |4 oth | |
700 | 1 | |a Smoller, Joel |e Sonstige |4 oth | |
700 | 1 | |a Temple, Blake |e Sonstige |4 oth | |
700 | 1 | |a Yong, Wen-An |e Sonstige |4 oth | |
700 | 1 | |a Zumbrun, Kevin |e Sonstige |4 oth | |
700 | 1 | |a Freistühler, Heinrich |e Sonstige |4 oth | |
700 | 1 | |a Szepessy, Anders |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0193-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854892 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090144731136 |
---|---|
any_adam_object | |
author | Liu, Tai-Ping |
author_facet | Liu, Tai-Ping |
author_role | aut |
author_sort | Liu, Tai-Ping |
author_variant | t p l tpl |
building | Verbundindex |
bvnumber | BV042419475 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184277695 (DE-599)BVBBV042419475 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0193-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03874nmm a2200625zcb4500</leader><controlfield tag="001">BV042419475</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461201939</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0193-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461266556</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6655-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0193-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184277695</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419475</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Tai-Ping</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in the Theory of Shock Waves</subfield><subfield code="c">by Tai-Ping Liu, Guy Métivier, Joel Smoller, Blake Temple, Wen-An Yong, Kevin Zumbrun ; edited by Heinrich Freistühler, Anders Szepessy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 520 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Nonlinear Differential Equations and Their Applications</subfield><subfield code="v">47</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In the field known as "the mathematical theory of shock waves," very exciting and unexpected developments have occurred in the last few years. Joel Smoller and Blake Temple have established classes of shock wave solutions to the Einstein Euler equations of general relativity; indeed, the mathematical and physical con sequences of these examples constitute a whole new area of research. The stability theory of "viscous" shock waves has received a new, geometric perspective due to the work of Kevin Zumbrun and collaborators, which offers a spectral approach to systems. Due to the intersection of point and essential spectrum, such an ap proach had for a long time seemed out of reach. The stability problem for "in viscid" shock waves has been given a novel, clear and concise treatment by Guy Metivier and coworkers through the use of paradifferential calculus. The L 1 semi group theory for systems of conservation laws, itself still a recent development, has been considerably condensed by the introduction of new distance functionals through Tai-Ping Liu and collaborators; these functionals compare solutions to different data by direct reference to their wave structure. The fundamental prop erties of systems with relaxation have found a systematic description through the papers of Wen-An Yong; for shock waves, this means a first general theorem on the existence of corresponding profiles. The five articles of this book reflect the above developments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Methods in Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classical and Quantum Gravitation, Relativity Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematische Physik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stoßwelle</subfield><subfield code="0">(DE-588)4057760-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stoßwelle</subfield><subfield code="0">(DE-588)4057760-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Métivier, Guy</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smoller, Joel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Temple, Blake</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yong, Wen-An</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zumbrun, Kevin</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Freistühler, Heinrich</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Szepessy, Anders</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0193-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854892</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042419475 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781461201939 9781461266556 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854892 |
oclc_num | 1184277695 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 520 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Progress in Nonlinear Differential Equations and Their Applications |
spelling | Liu, Tai-Ping Verfasser aut Advances in the Theory of Shock Waves by Tai-Ping Liu, Guy Métivier, Joel Smoller, Blake Temple, Wen-An Yong, Kevin Zumbrun ; edited by Heinrich Freistühler, Anders Szepessy Boston, MA Birkhäuser Boston 2001 1 Online-Ressource (VIII, 520 p) txt rdacontent c rdamedia cr rdacarrier Progress in Nonlinear Differential Equations and Their Applications 47 In the field known as "the mathematical theory of shock waves," very exciting and unexpected developments have occurred in the last few years. Joel Smoller and Blake Temple have established classes of shock wave solutions to the Einstein Euler equations of general relativity; indeed, the mathematical and physical con sequences of these examples constitute a whole new area of research. The stability theory of "viscous" shock waves has received a new, geometric perspective due to the work of Kevin Zumbrun and collaborators, which offers a spectral approach to systems. Due to the intersection of point and essential spectrum, such an ap proach had for a long time seemed out of reach. The stability problem for "in viscid" shock waves has been given a novel, clear and concise treatment by Guy Metivier and coworkers through the use of paradifferential calculus. The L 1 semi group theory for systems of conservation laws, itself still a recent development, has been considerably condensed by the introduction of new distance functionals through Tai-Ping Liu and collaborators; these functionals compare solutions to different data by direct reference to their wave structure. The fundamental prop erties of systems with relaxation have found a systematic description through the papers of Wen-An Yong; for shock waves, this means a first general theorem on the existence of corresponding profiles. The five articles of this book reflect the above developments Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Applications of Mathematics Mathematical Methods in Physics Classical and Quantum Gravitation, Relativity Theory Mathematik Mathematische Physik Stoßwelle (DE-588)4057760-0 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Stoßwelle (DE-588)4057760-0 s 2\p DE-604 Métivier, Guy Sonstige oth Smoller, Joel Sonstige oth Temple, Blake Sonstige oth Yong, Wen-An Sonstige oth Zumbrun, Kevin Sonstige oth Freistühler, Heinrich Sonstige oth Szepessy, Anders Sonstige oth https://doi.org/10.1007/978-1-4612-0193-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Liu, Tai-Ping Advances in the Theory of Shock Waves Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Applications of Mathematics Mathematical Methods in Physics Classical and Quantum Gravitation, Relativity Theory Mathematik Mathematische Physik Stoßwelle (DE-588)4057760-0 gnd |
subject_GND | (DE-588)4057760-0 (DE-588)4143413-4 |
title | Advances in the Theory of Shock Waves |
title_auth | Advances in the Theory of Shock Waves |
title_exact_search | Advances in the Theory of Shock Waves |
title_full | Advances in the Theory of Shock Waves by Tai-Ping Liu, Guy Métivier, Joel Smoller, Blake Temple, Wen-An Yong, Kevin Zumbrun ; edited by Heinrich Freistühler, Anders Szepessy |
title_fullStr | Advances in the Theory of Shock Waves by Tai-Ping Liu, Guy Métivier, Joel Smoller, Blake Temple, Wen-An Yong, Kevin Zumbrun ; edited by Heinrich Freistühler, Anders Szepessy |
title_full_unstemmed | Advances in the Theory of Shock Waves by Tai-Ping Liu, Guy Métivier, Joel Smoller, Blake Temple, Wen-An Yong, Kevin Zumbrun ; edited by Heinrich Freistühler, Anders Szepessy |
title_short | Advances in the Theory of Shock Waves |
title_sort | advances in the theory of shock waves |
topic | Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Applications of Mathematics Mathematical Methods in Physics Classical and Quantum Gravitation, Relativity Theory Mathematik Mathematische Physik Stoßwelle (DE-588)4057760-0 gnd |
topic_facet | Mathematics Differential equations, partial Mathematical physics Partial Differential Equations Applications of Mathematics Mathematical Methods in Physics Classical and Quantum Gravitation, Relativity Theory Mathematik Mathematische Physik Stoßwelle Aufsatzsammlung |
url | https://doi.org/10.1007/978-1-4612-0193-9 |
work_keys_str_mv | AT liutaiping advancesinthetheoryofshockwaves AT metivierguy advancesinthetheoryofshockwaves AT smollerjoel advancesinthetheoryofshockwaves AT templeblake advancesinthetheoryofshockwaves AT yongwenan advancesinthetheoryofshockwaves AT zumbrunkevin advancesinthetheoryofshockwaves AT freistuhlerheinrich advancesinthetheoryofshockwaves AT szepessyanders advancesinthetheoryofshockwaves |