Complex Analysis in One Variable:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2001
|
Ausgabe: | Second Edition |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book presents complex analysis in one variable in the context of modern mathematics, with clear connections to several complex variables, de Rham theory, real analysis, and other branches of mathematics. Thus, covering spaces are used explicitly in dealing with Cauchy's theorem, real variable methods are illustrated in the Loman-Menchoff theorem and in the corona theorem, and the algebraic structure of the ring of holomorphic functions is studied. Using the unique position of complex analysis, a field drawing on many disciplines, the book also illustrates powerful mathematical ideas and tools, and requires minimal background material. Cohomological methods are introduced, both in connection with the existence of primitives and in the study of meromorphic functionas on a compact Riemann surface. The proof of Picard's theorem given here illustrates the strong restrictions on holomorphic mappings imposed by curvature conditions. New to this second edition, a collection of over 100 pages worth of exercises, problems, and examples gives students an opportunity to consolidate their command of complex analysis and its relations to other branches of mathematics, including advanced calculus, topology, and real applications |
Beschreibung: | 1 Online-Ressource (XIV, 381 p) |
ISBN: | 9781461201755 9781461266471 |
DOI: | 10.1007/978-1-4612-0175-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419467 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781461201755 |c Online |9 978-1-4612-0175-5 | ||
020 | |a 9781461266471 |c Print |9 978-1-4612-6647-1 | ||
024 | 7 | |a 10.1007/978-1-4612-0175-5 |2 doi | |
035 | |a (OCoLC)879621363 | ||
035 | |a (DE-599)BVBBV042419467 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.9 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Narasimhan, Raghavan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Complex Analysis in One Variable |c by Raghavan Narasimhan, Yves Nievergelt |
250 | |a Second Edition | ||
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2001 | |
300 | |a 1 Online-Ressource (XIV, 381 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This book presents complex analysis in one variable in the context of modern mathematics, with clear connections to several complex variables, de Rham theory, real analysis, and other branches of mathematics. Thus, covering spaces are used explicitly in dealing with Cauchy's theorem, real variable methods are illustrated in the Loman-Menchoff theorem and in the corona theorem, and the algebraic structure of the ring of holomorphic functions is studied. Using the unique position of complex analysis, a field drawing on many disciplines, the book also illustrates powerful mathematical ideas and tools, and requires minimal background material. Cohomological methods are introduced, both in connection with the existence of primitives and in the study of meromorphic functionas on a compact Riemann surface. The proof of Picard's theorem given here illustrates the strong restrictions on holomorphic mappings imposed by curvature conditions. New to this second edition, a collection of over 100 pages worth of exercises, problems, and examples gives students an opportunity to consolidate their command of complex analysis and its relations to other branches of mathematics, including advanced calculus, topology, and real applications | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Analysis | |
650 | 4 | |a Several Complex Variables and Analytic Spaces | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Komplexe Variable |0 (DE-588)4164905-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Komplexe Variable |0 (DE-588)4164905-9 |D s |
689 | 0 | 1 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Funktion |g Mathematik |0 (DE-588)4071510-3 |D s |
689 | 1 | 1 | |a Mehrere komplexe Variable |0 (DE-588)4169285-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Nievergelt, Yves |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0175-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854884 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090127953920 |
---|---|
any_adam_object | |
author | Narasimhan, Raghavan |
author_facet | Narasimhan, Raghavan |
author_role | aut |
author_sort | Narasimhan, Raghavan |
author_variant | r n rn |
building | Verbundindex |
bvnumber | BV042419467 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879621363 (DE-599)BVBBV042419467 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0175-5 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03583nmm a2200637zc 4500</leader><controlfield tag="001">BV042419467</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461201755</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0175-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461266471</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6647-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0175-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879621363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419467</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Narasimhan, Raghavan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Analysis in One Variable</subfield><subfield code="c">by Raghavan Narasimhan, Yves Nievergelt</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 381 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book presents complex analysis in one variable in the context of modern mathematics, with clear connections to several complex variables, de Rham theory, real analysis, and other branches of mathematics. Thus, covering spaces are used explicitly in dealing with Cauchy's theorem, real variable methods are illustrated in the Loman-Menchoff theorem and in the corona theorem, and the algebraic structure of the ring of holomorphic functions is studied. Using the unique position of complex analysis, a field drawing on many disciplines, the book also illustrates powerful mathematical ideas and tools, and requires minimal background material. Cohomological methods are introduced, both in connection with the existence of primitives and in the study of meromorphic functionas on a compact Riemann surface. The proof of Picard's theorem given here illustrates the strong restrictions on holomorphic mappings imposed by curvature conditions. New to this second edition, a collection of over 100 pages worth of exercises, problems, and examples gives students an opportunity to consolidate their command of complex analysis and its relations to other branches of mathematics, including advanced calculus, topology, and real applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Several Complex Variables and Analytic Spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Komplexe Variable</subfield><subfield code="0">(DE-588)4164905-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Funktion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4071510-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Mehrere komplexe Variable</subfield><subfield code="0">(DE-588)4169285-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nievergelt, Yves</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0175-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854884</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419467 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781461201755 9781461266471 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854884 |
oclc_num | 879621363 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 381 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Boston |
record_format | marc |
spelling | Narasimhan, Raghavan Verfasser aut Complex Analysis in One Variable by Raghavan Narasimhan, Yves Nievergelt Second Edition Boston, MA Birkhäuser Boston 2001 1 Online-Ressource (XIV, 381 p) txt rdacontent c rdamedia cr rdacarrier This book presents complex analysis in one variable in the context of modern mathematics, with clear connections to several complex variables, de Rham theory, real analysis, and other branches of mathematics. Thus, covering spaces are used explicitly in dealing with Cauchy's theorem, real variable methods are illustrated in the Loman-Menchoff theorem and in the corona theorem, and the algebraic structure of the ring of holomorphic functions is studied. Using the unique position of complex analysis, a field drawing on many disciplines, the book also illustrates powerful mathematical ideas and tools, and requires minimal background material. Cohomological methods are introduced, both in connection with the existence of primitives and in the study of meromorphic functionas on a compact Riemann surface. The proof of Picard's theorem given here illustrates the strong restrictions on holomorphic mappings imposed by curvature conditions. New to this second edition, a collection of over 100 pages worth of exercises, problems, and examples gives students an opportunity to consolidate their command of complex analysis and its relations to other branches of mathematics, including advanced calculus, topology, and real applications Mathematics Geometry, algebraic Global analysis (Mathematics) Functions of complex variables Differential equations, partial Functions of a Complex Variable Algebraic Geometry Analysis Several Complex Variables and Analytic Spaces Mathematik Funktion Mathematik (DE-588)4071510-3 gnd rswk-swf Komplexe Variable (DE-588)4164905-9 gnd rswk-swf Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Mehrere komplexe Variable (DE-588)4169285-8 gnd rswk-swf Komplexe Variable (DE-588)4164905-9 s Funktionentheorie (DE-588)4018935-1 s 1\p DE-604 Funktion Mathematik (DE-588)4071510-3 s Mehrere komplexe Variable (DE-588)4169285-8 s 2\p DE-604 Nievergelt, Yves Sonstige oth https://doi.org/10.1007/978-1-4612-0175-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Narasimhan, Raghavan Complex Analysis in One Variable Mathematics Geometry, algebraic Global analysis (Mathematics) Functions of complex variables Differential equations, partial Functions of a Complex Variable Algebraic Geometry Analysis Several Complex Variables and Analytic Spaces Mathematik Funktion Mathematik (DE-588)4071510-3 gnd Komplexe Variable (DE-588)4164905-9 gnd Funktionentheorie (DE-588)4018935-1 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd |
subject_GND | (DE-588)4071510-3 (DE-588)4164905-9 (DE-588)4018935-1 (DE-588)4169285-8 |
title | Complex Analysis in One Variable |
title_auth | Complex Analysis in One Variable |
title_exact_search | Complex Analysis in One Variable |
title_full | Complex Analysis in One Variable by Raghavan Narasimhan, Yves Nievergelt |
title_fullStr | Complex Analysis in One Variable by Raghavan Narasimhan, Yves Nievergelt |
title_full_unstemmed | Complex Analysis in One Variable by Raghavan Narasimhan, Yves Nievergelt |
title_short | Complex Analysis in One Variable |
title_sort | complex analysis in one variable |
topic | Mathematics Geometry, algebraic Global analysis (Mathematics) Functions of complex variables Differential equations, partial Functions of a Complex Variable Algebraic Geometry Analysis Several Complex Variables and Analytic Spaces Mathematik Funktion Mathematik (DE-588)4071510-3 gnd Komplexe Variable (DE-588)4164905-9 gnd Funktionentheorie (DE-588)4018935-1 gnd Mehrere komplexe Variable (DE-588)4169285-8 gnd |
topic_facet | Mathematics Geometry, algebraic Global analysis (Mathematics) Functions of complex variables Differential equations, partial Functions of a Complex Variable Algebraic Geometry Analysis Several Complex Variables and Analytic Spaces Mathematik Funktion Mathematik Komplexe Variable Funktionentheorie Mehrere komplexe Variable |
url | https://doi.org/10.1007/978-1-4612-0175-5 |
work_keys_str_mv | AT narasimhanraghavan complexanalysisinonevariable AT nievergeltyves complexanalysisinonevariable |