Kinetic Theory and Fluid Dynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2002
|
Schriftenreihe: | Modeling and Simulation in Science, Engineering and Technology
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph is intended to provide a comprehensive description of the relation between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, according to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is directly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit |
Beschreibung: | 1 Online-Ressource (XI, 353 p) |
ISBN: | 9781461200611 9781461265948 |
ISSN: | 2164-3679 |
DOI: | 10.1007/978-1-4612-0061-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419421 | ||
003 | DE-604 | ||
005 | 20171212 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9781461200611 |c Online |9 978-1-4612-0061-1 | ||
020 | |a 9781461265948 |c Print |9 978-1-4612-6594-8 | ||
024 | 7 | |a 10.1007/978-1-4612-0061-1 |2 doi | |
035 | |a (OCoLC)1184442627 | ||
035 | |a (DE-599)BVBBV042419421 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 531 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Sone, Yoshio |d 1936- |e Verfasser |0 (DE-588)124212476 |4 aut | |
245 | 1 | 0 | |a Kinetic Theory and Fluid Dynamics |c by Yoshio Sone |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2002 | |
300 | |a 1 Online-Ressource (XI, 353 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Modeling and Simulation in Science, Engineering and Technology |x 2164-3679 | |
500 | |a This monograph is intended to provide a comprehensive description of the relation between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, according to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is directly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit | ||
650 | 4 | |a Physics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Hydraulic engineering | |
650 | 4 | |a Classical Continuum Physics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Engineering Fluid Dynamics | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kinetische Gastheorie |0 (DE-588)4163881-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gasdynamik |0 (DE-588)4019339-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kinetische Gastheorie |0 (DE-588)4163881-5 |D s |
689 | 0 | 1 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gasdynamik |0 (DE-588)4019339-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0061-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854838 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090026242048 |
---|---|
any_adam_object | |
author | Sone, Yoshio 1936- |
author_GND | (DE-588)124212476 |
author_facet | Sone, Yoshio 1936- |
author_role | aut |
author_sort | Sone, Yoshio 1936- |
author_variant | y s ys |
building | Verbundindex |
bvnumber | BV042419421 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184442627 (DE-599)BVBBV042419421 |
dewey-full | 531 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 531 - Classical mechanics |
dewey-raw | 531 |
dewey-search | 531 |
dewey-sort | 3531 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-1-4612-0061-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03712nmm a2200601zc 4500</leader><controlfield tag="001">BV042419421</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461200611</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0061-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461265948</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6594-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0061-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184442627</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419421</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">531</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sone, Yoshio</subfield><subfield code="d">1936-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124212476</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Kinetic Theory and Fluid Dynamics</subfield><subfield code="c">by Yoshio Sone</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 353 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Modeling and Simulation in Science, Engineering and Technology</subfield><subfield code="x">2164-3679</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph is intended to provide a comprehensive description of the relation between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, according to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is directly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classical Continuum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering Fluid Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kinetische Gastheorie</subfield><subfield code="0">(DE-588)4163881-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gasdynamik</subfield><subfield code="0">(DE-588)4019339-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kinetische Gastheorie</subfield><subfield code="0">(DE-588)4163881-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gasdynamik</subfield><subfield code="0">(DE-588)4019339-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0061-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854838</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419421 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781461200611 9781461265948 |
issn | 2164-3679 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854838 |
oclc_num | 1184442627 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 353 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Modeling and Simulation in Science, Engineering and Technology |
spelling | Sone, Yoshio 1936- Verfasser (DE-588)124212476 aut Kinetic Theory and Fluid Dynamics by Yoshio Sone Boston, MA Birkhäuser Boston 2002 1 Online-Ressource (XI, 353 p) txt rdacontent c rdamedia cr rdacarrier Modeling and Simulation in Science, Engineering and Technology 2164-3679 This monograph is intended to provide a comprehensive description of the relation between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, according to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is directly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit Physics Differential equations, partial Computer science / Mathematics Hydraulic engineering Classical Continuum Physics Partial Differential Equations Computational Mathematics and Numerical Analysis Engineering Fluid Dynamics Informatik Mathematik Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Kinetische Gastheorie (DE-588)4163881-5 gnd rswk-swf Gasdynamik (DE-588)4019339-1 gnd rswk-swf Kinetische Gastheorie (DE-588)4163881-5 s Strömungsmechanik (DE-588)4077970-1 s 1\p DE-604 Gasdynamik (DE-588)4019339-1 s 2\p DE-604 https://doi.org/10.1007/978-1-4612-0061-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Sone, Yoshio 1936- Kinetic Theory and Fluid Dynamics Physics Differential equations, partial Computer science / Mathematics Hydraulic engineering Classical Continuum Physics Partial Differential Equations Computational Mathematics and Numerical Analysis Engineering Fluid Dynamics Informatik Mathematik Strömungsmechanik (DE-588)4077970-1 gnd Kinetische Gastheorie (DE-588)4163881-5 gnd Gasdynamik (DE-588)4019339-1 gnd |
subject_GND | (DE-588)4077970-1 (DE-588)4163881-5 (DE-588)4019339-1 |
title | Kinetic Theory and Fluid Dynamics |
title_auth | Kinetic Theory and Fluid Dynamics |
title_exact_search | Kinetic Theory and Fluid Dynamics |
title_full | Kinetic Theory and Fluid Dynamics by Yoshio Sone |
title_fullStr | Kinetic Theory and Fluid Dynamics by Yoshio Sone |
title_full_unstemmed | Kinetic Theory and Fluid Dynamics by Yoshio Sone |
title_short | Kinetic Theory and Fluid Dynamics |
title_sort | kinetic theory and fluid dynamics |
topic | Physics Differential equations, partial Computer science / Mathematics Hydraulic engineering Classical Continuum Physics Partial Differential Equations Computational Mathematics and Numerical Analysis Engineering Fluid Dynamics Informatik Mathematik Strömungsmechanik (DE-588)4077970-1 gnd Kinetische Gastheorie (DE-588)4163881-5 gnd Gasdynamik (DE-588)4019339-1 gnd |
topic_facet | Physics Differential equations, partial Computer science / Mathematics Hydraulic engineering Classical Continuum Physics Partial Differential Equations Computational Mathematics and Numerical Analysis Engineering Fluid Dynamics Informatik Mathematik Strömungsmechanik Kinetische Gastheorie Gasdynamik |
url | https://doi.org/10.1007/978-1-4612-0061-1 |
work_keys_str_mv | AT soneyoshio kinetictheoryandfluiddynamics |