The Orbit Method in Geometry and Physics: In Honor of A.A. Kirillov
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2003
|
Schriftenreihe: | Progress in Mathematics
213 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The volume is dedicated to AA. Kirillov and emerged from an international conference which was held in Luminy, Marseille, in December 2000, on the occasion of Alexandre Alexandrovitch's 26 44th birthday. The conference was devoted to the orbit method in representation theory, an important subject that influenced the development of mathematics in the second half of the XXth century. Among the famous names related to this branch of mathematics, the name of AA Kirillov certainly holds a distinguished place, as the inventor and founder of the orbit method. The research articles in this volume are an outgrowth of the Kirillov Fest and they illustrate the most recent achievements in the orbit method and other areas closely related to the scientific interests of AA Kirillov. The orbit method has come to mean a method for obtaining the representations of Lie groups. It was successfully applied by Kirillov to obtain the unitary representation theory of nilpotent Lie groups, and at the end of this famous 1962 paper, it was suggested that the method may be applicable to other Lie groups as well. Over the years, the orbit method has helped to link harmonic analysis (the theory of unitary representations of Lie groups) with differential geometry (the symplectic geometry of homogeneous spaces). This theory reinvigorated many classical domains of mathematics, such as representation theory, integrable systems, complex algebraic geometry. It is now a useful and powerful tool in all of these areas |
Beschreibung: | 1 Online-Ressource (XIII, 474 p) |
ISBN: | 9781461200291 9781461265801 |
DOI: | 10.1007/978-1-4612-0029-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419412 | ||
003 | DE-604 | ||
005 | 20180205 | ||
006 | a |||| 11||| | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9781461200291 |c Online |9 978-1-4612-0029-1 | ||
020 | |a 9781461265801 |c Print |9 978-1-4612-6580-1 | ||
024 | 7 | |a 10.1007/978-1-4612-0029-1 |2 doi | |
035 | |a (OCoLC)863709539 | ||
035 | |a (DE-599)BVBBV042419412 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Duval, Christian |4 edt | |
245 | 1 | 0 | |a The Orbit Method in Geometry and Physics |b In Honor of A.A. Kirillov |c edited by Christian Duval, Valentin Ovsienko, Laurent Guieu |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2003 | |
300 | |a 1 Online-Ressource (XIII, 474 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Mathematics |v 213 | |
500 | |a The volume is dedicated to AA. Kirillov and emerged from an international conference which was held in Luminy, Marseille, in December 2000, on the occasion of Alexandre Alexandrovitch's 26 44th birthday. The conference was devoted to the orbit method in representation theory, an important subject that influenced the development of mathematics in the second half of the XXth century. Among the famous names related to this branch of mathematics, the name of AA Kirillov certainly holds a distinguished place, as the inventor and founder of the orbit method. The research articles in this volume are an outgrowth of the Kirillov Fest and they illustrate the most recent achievements in the orbit method and other areas closely related to the scientific interests of AA Kirillov. The orbit method has come to mean a method for obtaining the representations of Lie groups. It was successfully applied by Kirillov to obtain the unitary representation theory of nilpotent Lie groups, and at the end of this famous 1962 paper, it was suggested that the method may be applicable to other Lie groups as well. Over the years, the orbit method has helped to link harmonic analysis (the theory of unitary representations of Lie groups) with differential geometry (the symplectic geometry of homogeneous spaces). This theory reinvigorated many classical domains of mathematics, such as representation theory, integrable systems, complex algebraic geometry. It is now a useful and powerful tool in all of these areas | ||
600 | 1 | 7 | |a Kirillov, Aleksandr A. |d 1936- |0 (DE-588)124974953 |2 gnd |9 rswk-swf |
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Orbital |0 (DE-588)4127528-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bibliografie |0 (DE-588)4006432-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Methode |0 (DE-588)4038971-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Kirillov, Aleksandr A. |d 1936- |0 (DE-588)124974953 |D p |
689 | 0 | 1 | |a Bibliografie |0 (DE-588)4006432-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Orbital |0 (DE-588)4127528-7 |D s |
689 | 1 | 1 | |a Methode |0 (DE-588)4038971-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Ovsienko, Valentin |4 edt | |
700 | 1 | |a Guieu, Laurent |4 edt | |
700 | 1 | |a Kirillov, Aleksandr A. |d 1936- |0 (DE-588)124974953 |4 hnr | |
830 | 0 | |a Progress in Mathematics |v 213 |w (DE-604)BV000004120 |9 213 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0029-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854829 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153090011561984 |
---|---|
any_adam_object | |
author2 | Duval, Christian Ovsienko, Valentin Guieu, Laurent |
author2_role | edt edt edt |
author2_variant | c d cd v o vo l g lg |
author_GND | (DE-588)124974953 |
author_facet | Duval, Christian Ovsienko, Valentin Guieu, Laurent |
building | Verbundindex |
bvnumber | BV042419412 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863709539 (DE-599)BVBBV042419412 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0029-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04122nmm a2200685zcb4500</leader><controlfield tag="001">BV042419412</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180205 </controlfield><controlfield tag="006">a |||| 11||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461200291</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0029-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461265801</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6580-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0029-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863709539</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419412</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Duval, Christian</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Orbit Method in Geometry and Physics</subfield><subfield code="b">In Honor of A.A. Kirillov</subfield><subfield code="c">edited by Christian Duval, Valentin Ovsienko, Laurent Guieu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 474 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">213</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The volume is dedicated to AA. Kirillov and emerged from an international conference which was held in Luminy, Marseille, in December 2000, on the occasion of Alexandre Alexandrovitch's 26 44th birthday. The conference was devoted to the orbit method in representation theory, an important subject that influenced the development of mathematics in the second half of the XXth century. Among the famous names related to this branch of mathematics, the name of AA Kirillov certainly holds a distinguished place, as the inventor and founder of the orbit method. The research articles in this volume are an outgrowth of the Kirillov Fest and they illustrate the most recent achievements in the orbit method and other areas closely related to the scientific interests of AA Kirillov. The orbit method has come to mean a method for obtaining the representations of Lie groups. It was successfully applied by Kirillov to obtain the unitary representation theory of nilpotent Lie groups, and at the end of this famous 1962 paper, it was suggested that the method may be applicable to other Lie groups as well. Over the years, the orbit method has helped to link harmonic analysis (the theory of unitary representations of Lie groups) with differential geometry (the symplectic geometry of homogeneous spaces). This theory reinvigorated many classical domains of mathematics, such as representation theory, integrable systems, complex algebraic geometry. It is now a useful and powerful tool in all of these areas</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Kirillov, Aleksandr A.</subfield><subfield code="d">1936-</subfield><subfield code="0">(DE-588)124974953</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Orbital</subfield><subfield code="0">(DE-588)4127528-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bibliografie</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kirillov, Aleksandr A.</subfield><subfield code="d">1936-</subfield><subfield code="0">(DE-588)124974953</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bibliografie</subfield><subfield code="0">(DE-588)4006432-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Orbital</subfield><subfield code="0">(DE-588)4127528-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ovsienko, Valentin</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guieu, Laurent</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirillov, Aleksandr A.</subfield><subfield code="d">1936-</subfield><subfield code="0">(DE-588)124974953</subfield><subfield code="4">hnr</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">213</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">213</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0029-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854829</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV042419412 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781461200291 9781461265801 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854829 |
oclc_num | 863709539 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 474 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Birkhäuser Boston |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in Mathematics |
spelling | Duval, Christian edt The Orbit Method in Geometry and Physics In Honor of A.A. Kirillov edited by Christian Duval, Valentin Ovsienko, Laurent Guieu Boston, MA Birkhäuser Boston 2003 1 Online-Ressource (XIII, 474 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 213 The volume is dedicated to AA. Kirillov and emerged from an international conference which was held in Luminy, Marseille, in December 2000, on the occasion of Alexandre Alexandrovitch's 26 44th birthday. The conference was devoted to the orbit method in representation theory, an important subject that influenced the development of mathematics in the second half of the XXth century. Among the famous names related to this branch of mathematics, the name of AA Kirillov certainly holds a distinguished place, as the inventor and founder of the orbit method. The research articles in this volume are an outgrowth of the Kirillov Fest and they illustrate the most recent achievements in the orbit method and other areas closely related to the scientific interests of AA Kirillov. The orbit method has come to mean a method for obtaining the representations of Lie groups. It was successfully applied by Kirillov to obtain the unitary representation theory of nilpotent Lie groups, and at the end of this famous 1962 paper, it was suggested that the method may be applicable to other Lie groups as well. Over the years, the orbit method has helped to link harmonic analysis (the theory of unitary representations of Lie groups) with differential geometry (the symplectic geometry of homogeneous spaces). This theory reinvigorated many classical domains of mathematics, such as representation theory, integrable systems, complex algebraic geometry. It is now a useful and powerful tool in all of these areas Kirillov, Aleksandr A. 1936- (DE-588)124974953 gnd rswk-swf Mathematics Group theory Global differential geometry Cell aggregation / Mathematics Group Theory and Generalizations Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Theoretical, Mathematical and Computational Physics Mathematik Orbital (DE-588)4127528-7 gnd rswk-swf Bibliografie (DE-588)4006432-3 gnd rswk-swf Methode (DE-588)4038971-6 gnd rswk-swf (DE-588)1071861417 Konferenzschrift gnd-content Kirillov, Aleksandr A. 1936- (DE-588)124974953 p Bibliografie (DE-588)4006432-3 s 1\p DE-604 Orbital (DE-588)4127528-7 s Methode (DE-588)4038971-6 s 2\p DE-604 Ovsienko, Valentin edt Guieu, Laurent edt Kirillov, Aleksandr A. 1936- (DE-588)124974953 hnr Progress in Mathematics 213 (DE-604)BV000004120 213 https://doi.org/10.1007/978-1-4612-0029-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | The Orbit Method in Geometry and Physics In Honor of A.A. Kirillov Progress in Mathematics Kirillov, Aleksandr A. 1936- (DE-588)124974953 gnd Mathematics Group theory Global differential geometry Cell aggregation / Mathematics Group Theory and Generalizations Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Theoretical, Mathematical and Computational Physics Mathematik Orbital (DE-588)4127528-7 gnd Bibliografie (DE-588)4006432-3 gnd Methode (DE-588)4038971-6 gnd |
subject_GND | (DE-588)124974953 (DE-588)4127528-7 (DE-588)4006432-3 (DE-588)4038971-6 (DE-588)1071861417 |
title | The Orbit Method in Geometry and Physics In Honor of A.A. Kirillov |
title_auth | The Orbit Method in Geometry and Physics In Honor of A.A. Kirillov |
title_exact_search | The Orbit Method in Geometry and Physics In Honor of A.A. Kirillov |
title_full | The Orbit Method in Geometry and Physics In Honor of A.A. Kirillov edited by Christian Duval, Valentin Ovsienko, Laurent Guieu |
title_fullStr | The Orbit Method in Geometry and Physics In Honor of A.A. Kirillov edited by Christian Duval, Valentin Ovsienko, Laurent Guieu |
title_full_unstemmed | The Orbit Method in Geometry and Physics In Honor of A.A. Kirillov edited by Christian Duval, Valentin Ovsienko, Laurent Guieu |
title_short | The Orbit Method in Geometry and Physics |
title_sort | the orbit method in geometry and physics in honor of a a kirillov |
title_sub | In Honor of A.A. Kirillov |
topic | Kirillov, Aleksandr A. 1936- (DE-588)124974953 gnd Mathematics Group theory Global differential geometry Cell aggregation / Mathematics Group Theory and Generalizations Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Theoretical, Mathematical and Computational Physics Mathematik Orbital (DE-588)4127528-7 gnd Bibliografie (DE-588)4006432-3 gnd Methode (DE-588)4038971-6 gnd |
topic_facet | Kirillov, Aleksandr A. 1936- Mathematics Group theory Global differential geometry Cell aggregation / Mathematics Group Theory and Generalizations Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Theoretical, Mathematical and Computational Physics Mathematik Orbital Bibliografie Methode Konferenzschrift |
url | https://doi.org/10.1007/978-1-4612-0029-1 |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT duvalchristian theorbitmethodingeometryandphysicsinhonorofaakirillov AT ovsienkovalentin theorbitmethodingeometryandphysicsinhonorofaakirillov AT guieulaurent theorbitmethodingeometryandphysicsinhonorofaakirillov AT kirillovaleksandra theorbitmethodingeometryandphysicsinhonorofaakirillov |