Elements of Noncommutative Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2001
|
Schriftenreihe: | Birkhäuser Advanced Texts, Basler Lehrbücher
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Our purpose and main concern in writing this book is to illuminate classical concepts from the noncommutative viewpoint, to make the language and techniques of noncommutative geometry accessible and familiar to practitioners of classical mathematics, and to benefit physicists interested in the uses of noncommutative spaces. Same may say that ours is a very "commutative" way to deal with noncommutative matters; this charge we readily admit. Noncommutative geometry amounts to a program of unification of mathematics under the aegis of the quantum apparatus, i.e., the theory of operators and of C*-algebras. Largely the creation of a single person, Alain Connes, noncommutative geometry is just coming of age as the new century opens. The bible of the subject is, and will remain, Connes' Noncommutative Geometry (1994), itself the "3.8-fold expansion" of the French Geometrie non commutative ( 1990). These are extraordinary books, a "tapestry" of physics and mathematics, in the words of Vaughan jones, and the work of a "poet of modern science," according to Daniel Kastler, replete with subtle knowledge and insights apt to inspire several generations |
Beschreibung: | 1 Online-Ressource (XVIII, 686 p) |
ISBN: | 9781461200055 9781461265696 |
ISSN: | 1019-6242 |
DOI: | 10.1007/978-1-4612-0005-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419401 | ||
003 | DE-604 | ||
005 | 20180110 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781461200055 |c Online |9 978-1-4612-0005-5 | ||
020 | |a 9781461265696 |c Print |9 978-1-4612-6569-6 | ||
024 | 7 | |a 10.1007/978-1-4612-0005-5 |2 doi | |
035 | |a (OCoLC)864736188 | ||
035 | |a (DE-599)BVBBV042419401 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gracia-Bondía, José M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elements of Noncommutative Geometry |c by José M. Gracia-Bondía, Joseph C. Várilly, Héctor Figueroa |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2001 | |
300 | |a 1 Online-Ressource (XVIII, 686 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Birkhäuser Advanced Texts, Basler Lehrbücher |x 1019-6242 | |
500 | |a Our purpose and main concern in writing this book is to illuminate classical concepts from the noncommutative viewpoint, to make the language and techniques of noncommutative geometry accessible and familiar to practitioners of classical mathematics, and to benefit physicists interested in the uses of noncommutative spaces. Same may say that ours is a very "commutative" way to deal with noncommutative matters; this charge we readily admit. Noncommutative geometry amounts to a program of unification of mathematics under the aegis of the quantum apparatus, i.e., the theory of operators and of C*-algebras. Largely the creation of a single person, Alain Connes, noncommutative geometry is just coming of age as the new century opens. The bible of the subject is, and will remain, Connes' Noncommutative Geometry (1994), itself the "3.8-fold expansion" of the French Geometrie non commutative ( 1990). These are extraordinary books, a "tapestry" of physics and mathematics, in the words of Vaughan jones, and the work of a "poet of modern science," according to Daniel Kastler, replete with subtle knowledge and insights apt to inspire several generations | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Quantum theory | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Quantum Physics | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Quantentheorie | |
650 | 0 | 7 | |a Nichtkommutative Geometrie |0 (DE-588)4171742-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtkommutative Differentialgeometrie |0 (DE-588)4311174-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtkommutative Geometrie |0 (DE-588)4171742-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Nichtkommutative Differentialgeometrie |0 (DE-588)4311174-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Várilly, Joseph C. |e Sonstige |4 oth | |
700 | 1 | |a Figueroa, Héctor |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0005-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854818 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089991639040 |
---|---|
any_adam_object | |
author | Gracia-Bondía, José M. |
author_facet | Gracia-Bondía, José M. |
author_role | aut |
author_sort | Gracia-Bondía, José M. |
author_variant | j m g b jmg jmgb |
building | Verbundindex |
bvnumber | BV042419401 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864736188 (DE-599)BVBBV042419401 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4612-0005-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03411nmm a2200601zc 4500</leader><controlfield tag="001">BV042419401</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180110 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461200055</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0005-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461265696</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6569-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0005-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864736188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419401</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gracia-Bondía, José M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of Noncommutative Geometry</subfield><subfield code="c">by José M. Gracia-Bondía, Joseph C. Várilly, Héctor Figueroa</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVIII, 686 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Birkhäuser Advanced Texts, Basler Lehrbücher</subfield><subfield code="x">1019-6242</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Our purpose and main concern in writing this book is to illuminate classical concepts from the noncommutative viewpoint, to make the language and techniques of noncommutative geometry accessible and familiar to practitioners of classical mathematics, and to benefit physicists interested in the uses of noncommutative spaces. Same may say that ours is a very "commutative" way to deal with noncommutative matters; this charge we readily admit. Noncommutative geometry amounts to a program of unification of mathematics under the aegis of the quantum apparatus, i.e., the theory of operators and of C*-algebras. Largely the creation of a single person, Alain Connes, noncommutative geometry is just coming of age as the new century opens. The bible of the subject is, and will remain, Connes' Noncommutative Geometry (1994), itself the "3.8-fold expansion" of the French Geometrie non commutative ( 1990). These are extraordinary books, a "tapestry" of physics and mathematics, in the words of Vaughan jones, and the work of a "poet of modern science," according to Daniel Kastler, replete with subtle knowledge and insights apt to inspire several generations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtkommutative Geometrie</subfield><subfield code="0">(DE-588)4171742-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtkommutative Differentialgeometrie</subfield><subfield code="0">(DE-588)4311174-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtkommutative Geometrie</subfield><subfield code="0">(DE-588)4171742-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtkommutative Differentialgeometrie</subfield><subfield code="0">(DE-588)4311174-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Várilly, Joseph C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Figueroa, Héctor</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0005-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854818</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419401 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781461200055 9781461265696 |
issn | 1019-6242 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854818 |
oclc_num | 864736188 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVIII, 686 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Birkhäuser Advanced Texts, Basler Lehrbücher |
spelling | Gracia-Bondía, José M. Verfasser aut Elements of Noncommutative Geometry by José M. Gracia-Bondía, Joseph C. Várilly, Héctor Figueroa Boston, MA Birkhäuser Boston 2001 1 Online-Ressource (XVIII, 686 p) txt rdacontent c rdamedia cr rdacarrier Birkhäuser Advanced Texts, Basler Lehrbücher 1019-6242 Our purpose and main concern in writing this book is to illuminate classical concepts from the noncommutative viewpoint, to make the language and techniques of noncommutative geometry accessible and familiar to practitioners of classical mathematics, and to benefit physicists interested in the uses of noncommutative spaces. Same may say that ours is a very "commutative" way to deal with noncommutative matters; this charge we readily admit. Noncommutative geometry amounts to a program of unification of mathematics under the aegis of the quantum apparatus, i.e., the theory of operators and of C*-algebras. Largely the creation of a single person, Alain Connes, noncommutative geometry is just coming of age as the new century opens. The bible of the subject is, and will remain, Connes' Noncommutative Geometry (1994), itself the "3.8-fold expansion" of the French Geometrie non commutative ( 1990). These are extraordinary books, a "tapestry" of physics and mathematics, in the words of Vaughan jones, and the work of a "poet of modern science," according to Daniel Kastler, replete with subtle knowledge and insights apt to inspire several generations Mathematics Global differential geometry Cell aggregation / Mathematics Quantum theory Differential Geometry Applications of Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Quantum Physics Mathematik Quantentheorie Nichtkommutative Geometrie (DE-588)4171742-9 gnd rswk-swf Nichtkommutative Differentialgeometrie (DE-588)4311174-9 gnd rswk-swf Nichtkommutative Geometrie (DE-588)4171742-9 s 1\p DE-604 Nichtkommutative Differentialgeometrie (DE-588)4311174-9 s 2\p DE-604 Várilly, Joseph C. Sonstige oth Figueroa, Héctor Sonstige oth https://doi.org/10.1007/978-1-4612-0005-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gracia-Bondía, José M. Elements of Noncommutative Geometry Mathematics Global differential geometry Cell aggregation / Mathematics Quantum theory Differential Geometry Applications of Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Quantum Physics Mathematik Quantentheorie Nichtkommutative Geometrie (DE-588)4171742-9 gnd Nichtkommutative Differentialgeometrie (DE-588)4311174-9 gnd |
subject_GND | (DE-588)4171742-9 (DE-588)4311174-9 |
title | Elements of Noncommutative Geometry |
title_auth | Elements of Noncommutative Geometry |
title_exact_search | Elements of Noncommutative Geometry |
title_full | Elements of Noncommutative Geometry by José M. Gracia-Bondía, Joseph C. Várilly, Héctor Figueroa |
title_fullStr | Elements of Noncommutative Geometry by José M. Gracia-Bondía, Joseph C. Várilly, Héctor Figueroa |
title_full_unstemmed | Elements of Noncommutative Geometry by José M. Gracia-Bondía, Joseph C. Várilly, Héctor Figueroa |
title_short | Elements of Noncommutative Geometry |
title_sort | elements of noncommutative geometry |
topic | Mathematics Global differential geometry Cell aggregation / Mathematics Quantum theory Differential Geometry Applications of Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Quantum Physics Mathematik Quantentheorie Nichtkommutative Geometrie (DE-588)4171742-9 gnd Nichtkommutative Differentialgeometrie (DE-588)4311174-9 gnd |
topic_facet | Mathematics Global differential geometry Cell aggregation / Mathematics Quantum theory Differential Geometry Applications of Mathematics Manifolds and Cell Complexes (incl. Diff.Topology) Quantum Physics Mathematik Quantentheorie Nichtkommutative Geometrie Nichtkommutative Differentialgeometrie |
url | https://doi.org/10.1007/978-1-4612-0005-5 |
work_keys_str_mv | AT graciabondiajosem elementsofnoncommutativegeometry AT varillyjosephc elementsofnoncommutativegeometry AT figueroahector elementsofnoncommutativegeometry |