An Introduction to Wavelet Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Birkhäuser Boston
2004
|
Schriftenreihe: | Applied and Numerical Harmonic Analysis
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | An Introduction to Wavelet Analysis provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and application of wavelet bases. The book develops the basic theory of wavelet bases and transforms without assuming any knowledge of Lebesgue integration or the theory of abstract Hilbert spaces. The book motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, and then shows how a more abstract approach allows us to generalize and improve upon the Haar series. Once these ideas have been established and explored, variations and extensions of Haar construction are presented. The mathematical pre-requisites for the book are a course in advanced calculus, familiarity with the language of formal mathematical proofs, and basic linear algebra concepts. Features: *Rigorous proofs with consistent assumptions on the mathematical background of the reader; does not assume familiarity with Hilbert spaces or Lebesgue measure * Complete background material on (Fourier Analysis topics) Fourier Analysis * Wavelets are presented first on the continuous domain and later restricted to the discrete domain, for improved motivation and understanding of discrete wavelet transforms and applications. * Special appendix, "Excursions in Wavelet Theory " provides a guide to current literature on the topic * Over 170 exercises guide the reader through the text. The book is an ideal text/reference for a broad audience of advanced students and researchers in applied mathematics, electrical engineering, computational science, and physical sciences. It is also suitable as a self-study reference guide for professionals. All readers will find |
Beschreibung: | 1 Online-Ressource (XX, 452 p) |
ISBN: | 9781461200017 9781461265672 |
ISSN: | 2296-5009 |
DOI: | 10.1007/978-1-4612-0001-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419399 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781461200017 |c Online |9 978-1-4612-0001-7 | ||
020 | |a 9781461265672 |c Print |9 978-1-4612-6567-2 | ||
024 | 7 | |a 10.1007/978-1-4612-0001-7 |2 doi | |
035 | |a (OCoLC)867181450 | ||
035 | |a (DE-599)BVBBV042419399 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 004 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Walnut, David F. |e Verfasser |4 aut | |
245 | 1 | 0 | |a An Introduction to Wavelet Analysis |c by David F. Walnut |
264 | 1 | |a Boston, MA |b Birkhäuser Boston |c 2004 | |
300 | |a 1 Online-Ressource (XX, 452 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Applied and Numerical Harmonic Analysis |x 2296-5009 | |
500 | |a An Introduction to Wavelet Analysis provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and application of wavelet bases. The book develops the basic theory of wavelet bases and transforms without assuming any knowledge of Lebesgue integration or the theory of abstract Hilbert spaces. The book motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, and then shows how a more abstract approach allows us to generalize and improve upon the Haar series. Once these ideas have been established and explored, variations and extensions of Haar construction are presented. The mathematical pre-requisites for the book are a course in advanced calculus, familiarity with the language of formal mathematical proofs, and basic linear algebra concepts. Features: *Rigorous proofs with consistent assumptions on the mathematical background of the reader; does not assume familiarity with Hilbert spaces or Lebesgue measure * Complete background material on (Fourier Analysis topics) Fourier Analysis * Wavelets are presented first on the continuous domain and later restricted to the discrete domain, for improved motivation and understanding of discrete wavelet transforms and applications. * Special appendix, "Excursions in Wavelet Theory " provides a guide to current literature on the topic * Over 170 exercises guide the reader through the text. The book is an ideal text/reference for a broad audience of advanced students and researchers in applied mathematics, electrical engineering, computational science, and physical sciences. It is also suitable as a self-study reference guide for professionals. All readers will find | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Computer science | |
650 | 4 | |a Computational Science and Engineering | |
650 | 4 | |a Signal, Image and Speech Processing | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Wavelet |0 (DE-588)4215427-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4612-0001-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854816 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089982201856 |
---|---|
any_adam_object | |
author | Walnut, David F. |
author_facet | Walnut, David F. |
author_role | aut |
author_sort | Walnut, David F. |
author_variant | d f w df dfw |
building | Verbundindex |
bvnumber | BV042419399 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)867181450 (DE-599)BVBBV042419399 |
dewey-full | 004 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 004 - Computer science |
dewey-raw | 004 |
dewey-search | 004 |
dewey-sort | 14 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
doi_str_mv | 10.1007/978-1-4612-0001-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03555nmm a2200541zc 4500</leader><controlfield tag="001">BV042419399</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461200017</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4612-0001-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461265672</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4612-6567-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4612-0001-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)867181450</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419399</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">004</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Walnut, David F.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Introduction to Wavelet Analysis</subfield><subfield code="c">by David F. Walnut</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Birkhäuser Boston</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 452 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Applied and Numerical Harmonic Analysis</subfield><subfield code="x">2296-5009</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">An Introduction to Wavelet Analysis provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and application of wavelet bases. The book develops the basic theory of wavelet bases and transforms without assuming any knowledge of Lebesgue integration or the theory of abstract Hilbert spaces. The book motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, and then shows how a more abstract approach allows us to generalize and improve upon the Haar series. Once these ideas have been established and explored, variations and extensions of Haar construction are presented. The mathematical pre-requisites for the book are a course in advanced calculus, familiarity with the language of formal mathematical proofs, and basic linear algebra concepts. Features: *Rigorous proofs with consistent assumptions on the mathematical background of the reader; does not assume familiarity with Hilbert spaces or Lebesgue measure * Complete background material on (Fourier Analysis topics) Fourier Analysis * Wavelets are presented first on the continuous domain and later restricted to the discrete domain, for improved motivation and understanding of discrete wavelet transforms and applications. * Special appendix, "Excursions in Wavelet Theory " provides a guide to current literature on the topic * Over 170 exercises guide the reader through the text. The book is an ideal text/reference for a broad audience of advanced students and researchers in applied mathematics, electrical engineering, computational science, and physical sciences. It is also suitable as a self-study reference guide for professionals. All readers will find</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Science and Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal, Image and Speech Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4612-0001-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854816</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419399 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781461200017 9781461265672 |
issn | 2296-5009 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854816 |
oclc_num | 867181450 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XX, 452 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Birkhäuser Boston |
record_format | marc |
series2 | Applied and Numerical Harmonic Analysis |
spelling | Walnut, David F. Verfasser aut An Introduction to Wavelet Analysis by David F. Walnut Boston, MA Birkhäuser Boston 2004 1 Online-Ressource (XX, 452 p) txt rdacontent c rdamedia cr rdacarrier Applied and Numerical Harmonic Analysis 2296-5009 An Introduction to Wavelet Analysis provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and application of wavelet bases. The book develops the basic theory of wavelet bases and transforms without assuming any knowledge of Lebesgue integration or the theory of abstract Hilbert spaces. The book motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, and then shows how a more abstract approach allows us to generalize and improve upon the Haar series. Once these ideas have been established and explored, variations and extensions of Haar construction are presented. The mathematical pre-requisites for the book are a course in advanced calculus, familiarity with the language of formal mathematical proofs, and basic linear algebra concepts. Features: *Rigorous proofs with consistent assumptions on the mathematical background of the reader; does not assume familiarity with Hilbert spaces or Lebesgue measure * Complete background material on (Fourier Analysis topics) Fourier Analysis * Wavelets are presented first on the continuous domain and later restricted to the discrete domain, for improved motivation and understanding of discrete wavelet transforms and applications. * Special appendix, "Excursions in Wavelet Theory " provides a guide to current literature on the topic * Over 170 exercises guide the reader through the text. The book is an ideal text/reference for a broad audience of advanced students and researchers in applied mathematics, electrical engineering, computational science, and physical sciences. It is also suitable as a self-study reference guide for professionals. All readers will find Mathematics Functional analysis Computer science / Mathematics Computer science Computational Science and Engineering Signal, Image and Speech Processing Computational Mathematics and Numerical Analysis Applications of Mathematics Functional Analysis Informatik Mathematik Wavelet (DE-588)4215427-3 gnd rswk-swf Wavelet (DE-588)4215427-3 s 1\p DE-604 https://doi.org/10.1007/978-1-4612-0001-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Walnut, David F. An Introduction to Wavelet Analysis Mathematics Functional analysis Computer science / Mathematics Computer science Computational Science and Engineering Signal, Image and Speech Processing Computational Mathematics and Numerical Analysis Applications of Mathematics Functional Analysis Informatik Mathematik Wavelet (DE-588)4215427-3 gnd |
subject_GND | (DE-588)4215427-3 |
title | An Introduction to Wavelet Analysis |
title_auth | An Introduction to Wavelet Analysis |
title_exact_search | An Introduction to Wavelet Analysis |
title_full | An Introduction to Wavelet Analysis by David F. Walnut |
title_fullStr | An Introduction to Wavelet Analysis by David F. Walnut |
title_full_unstemmed | An Introduction to Wavelet Analysis by David F. Walnut |
title_short | An Introduction to Wavelet Analysis |
title_sort | an introduction to wavelet analysis |
topic | Mathematics Functional analysis Computer science / Mathematics Computer science Computational Science and Engineering Signal, Image and Speech Processing Computational Mathematics and Numerical Analysis Applications of Mathematics Functional Analysis Informatik Mathematik Wavelet (DE-588)4215427-3 gnd |
topic_facet | Mathematics Functional analysis Computer science / Mathematics Computer science Computational Science and Engineering Signal, Image and Speech Processing Computational Mathematics and Numerical Analysis Applications of Mathematics Functional Analysis Informatik Mathematik Wavelet |
url | https://doi.org/10.1007/978-1-4612-0001-7 |
work_keys_str_mv | AT walnutdavidf anintroductiontowaveletanalysis |