Hyperbolic Geometry:
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Anderson, James W. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: London Springer London 1999
Schriftenreihe:Springer Undergraduate Mathematics Series
Schlagworte:
Online-Zugang:Volltext
Beschreibung:The geometry of the hyperbolic plane has been an active and fascinating field of mathematical inquiry for most of the past two centuries. This book provides a self-contained introduction to the subject, suitable for third or fourth year undergraduates. The basic approach taken is to define hyperbolic lines and develop a natural group of transformations preserving hyperbolic lines, and then study hyperbolic geometry as those quantities invariant under this group of transformations. Topics covered include the upper half-plane model of the hyperbolic plane, Möbius transformations, the general Möbius group, and their subgroups preserving the upper half-plane, hyperbolic arc-length and distance as quantities invariant under these subgroups, the Poincaré disc model, convex subsets of the hyperbolic plane, hyperbolic area, the Gauss-Bonnet formula and its applications. This updated second edition also features: an expanded discussion of planar models of the hyperbolic plane arising from complex analysis; the hyperboloid model of the hyperbolic plane; brief discussion of generalizations to higher dimensions; many new exercises. The style and level of the book, which assumes few mathematical prerequisites, make it an ideal introduction to this subject and provides the reader with a firm grasp of the concepts and techniques of this beautiful part of the mathematical landscape
Beschreibung:1 Online-Ressource (IX, 230 p)
ISBN:9781447139874
9781852331566
ISSN:1615-2085
DOI:10.1007/978-1-4471-3987-4

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen