Complex Analysis on Infinite Dimensional Spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
1999
|
Schriftenreihe: | Springer Monographs in Mathematics
|
Schlagworte: | |
Online-Zugang: | UBW01 Volltext |
Beschreibung: | Infinite dimensional holomorphy is the study of holomorphic or analytic functions over complex topological vector spaces. The terms in this description are easily stated and explained and allow the subject to project itself initially, and innocently, as a compact theory with well defined boundaries. However, a comprehensive study would include delving into, and interacting with, not only the obvious topics of topology, several complex variables theory and functional analysis but also, differential geometry, Jordan algebras, Lie groups, operator theory, logic, differential equations and fixed point theory. This diversity leads to a dynamic synthesis of ideas and to an appreciation of a remarkable feature of mathematics - its unity. Unity requires synthesis while synthesis leads to unity. It is necessary to stand back every so often, to take an overall look at one's subject and ask "How has it developed over the last ten, twenty, fifty years? Where is it going? What am I doing?" I was asking these questions during the spring of 1993 as I prepared a short course to be given at Universidade Federal do Rio de Janeiro during the following July. The abundance of suitable material made the selection of topics difficult. For some time I hesitated between two very different aspects of infinite dimensional holomorphy, the geometric-algebraic theory associated with bounded symmetric domains and Jordan triple systems and the topological theory which forms the subject of the present book |
Beschreibung: | 1 Online-Ressource (XV, 543 S.) |
ISBN: | 9781447108696 9781447112235 |
DOI: | 10.1007/978-1-4471-0869-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419371 | ||
003 | DE-604 | ||
005 | 20180920 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9781447108696 |c Online |9 978-1-4471-0869-6 | ||
020 | |a 9781447112235 |c Print |9 978-1-4471-1223-5 | ||
024 | 7 | |a 10.1007/978-1-4471-0869-6 |2 doi | |
035 | |a (OCoLC)863719221 | ||
035 | |a (DE-599)BVBBV042419371 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-20 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a SK 750 |0 (DE-625)143254: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Dineen, Seán |d 1944- |e Verfasser |0 (DE-588)115656715 |4 aut | |
245 | 1 | 0 | |a Complex Analysis on Infinite Dimensional Spaces |c by Seán Dineen |
264 | 1 | |a London |b Springer London |c 1999 | |
300 | |a 1 Online-Ressource (XV, 543 S.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Monographs in Mathematics | |
500 | |a Infinite dimensional holomorphy is the study of holomorphic or analytic functions over complex topological vector spaces. The terms in this description are easily stated and explained and allow the subject to project itself initially, and innocently, as a compact theory with well defined boundaries. However, a comprehensive study would include delving into, and interacting with, not only the obvious topics of topology, several complex variables theory and functional analysis but also, differential geometry, Jordan algebras, Lie groups, operator theory, logic, differential equations and fixed point theory. This diversity leads to a dynamic synthesis of ideas and to an appreciation of a remarkable feature of mathematics - its unity. Unity requires synthesis while synthesis leads to unity. It is necessary to stand back every so often, to take an overall look at one's subject and ask "How has it developed over the last ten, twenty, fifty years? Where is it going? What am I doing?" I was asking these questions during the spring of 1993 as I prepared a short course to be given at Universidade Federal do Rio de Janeiro during the following July. The abundance of suitable material made the selection of topics difficult. For some time I hesitated between two very different aspects of infinite dimensional holomorphy, the geometric-algebraic theory associated with bounded symmetric domains and Jordan triple systems and the topological theory which forms the subject of the present book | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Topology | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Holomorphe Funktion |0 (DE-588)4025645-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Topologischer Vektorraum |0 (DE-588)4122383-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Holomorphe Funktion |0 (DE-588)4025645-5 |D s |
689 | 0 | 1 | |a Topologischer Vektorraum |0 (DE-588)4122383-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-0869-6 |x Verlag |3 Volltext |
912 | |a ZDB-30-PQE |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854788 | ||
966 | e | |u http://ebookcentral.proquest.com/lib/ub-wuerzburg/detail.action?docID=3073387 |l UBW01 |p ZDB-30-PQE |q UBW_Einzelkauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153089917190144 |
---|---|
any_adam_object | |
author | Dineen, Seán 1944- |
author_GND | (DE-588)115656715 |
author_facet | Dineen, Seán 1944- |
author_role | aut |
author_sort | Dineen, Seán 1944- |
author_variant | s d sd |
building | Verbundindex |
bvnumber | BV042419371 |
classification_rvk | SK 600 SK 750 |
classification_tum | MAT 000 |
collection | ZDB-30-PQE ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863719221 (DE-599)BVBBV042419371 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4471-0869-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03368nmm a2200517zc 4500</leader><controlfield tag="001">BV042419371</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180920 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447108696</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4471-0869-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447112235</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4471-1223-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-0869-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863719221</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419371</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 750</subfield><subfield code="0">(DE-625)143254:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dineen, Seán</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115656715</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex Analysis on Infinite Dimensional Spaces</subfield><subfield code="c">by Seán Dineen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 543 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Infinite dimensional holomorphy is the study of holomorphic or analytic functions over complex topological vector spaces. The terms in this description are easily stated and explained and allow the subject to project itself initially, and innocently, as a compact theory with well defined boundaries. However, a comprehensive study would include delving into, and interacting with, not only the obvious topics of topology, several complex variables theory and functional analysis but also, differential geometry, Jordan algebras, Lie groups, operator theory, logic, differential equations and fixed point theory. This diversity leads to a dynamic synthesis of ideas and to an appreciation of a remarkable feature of mathematics - its unity. Unity requires synthesis while synthesis leads to unity. It is necessary to stand back every so often, to take an overall look at one's subject and ask "How has it developed over the last ten, twenty, fifty years? Where is it going? What am I doing?" I was asking these questions during the spring of 1993 as I prepared a short course to be given at Universidade Federal do Rio de Janeiro during the following July. The abundance of suitable material made the selection of topics difficult. For some time I hesitated between two very different aspects of infinite dimensional holomorphy, the geometric-algebraic theory associated with bounded symmetric domains and Jordan triple systems and the topological theory which forms the subject of the present book</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologischer Vektorraum</subfield><subfield code="0">(DE-588)4122383-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologischer Vektorraum</subfield><subfield code="0">(DE-588)4122383-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-0869-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854788</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://ebookcentral.proquest.com/lib/ub-wuerzburg/detail.action?docID=3073387</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBW_Einzelkauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042419371 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781447108696 9781447112235 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854788 |
oclc_num | 863719221 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-20 DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-20 DE-634 |
physical | 1 Online-Ressource (XV, 543 S.) |
psigel | ZDB-30-PQE ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive ZDB-30-PQE UBW_Einzelkauf |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Springer London |
record_format | marc |
series2 | Springer Monographs in Mathematics |
spelling | Dineen, Seán 1944- Verfasser (DE-588)115656715 aut Complex Analysis on Infinite Dimensional Spaces by Seán Dineen London Springer London 1999 1 Online-Ressource (XV, 543 S.) txt rdacontent c rdamedia cr rdacarrier Springer Monographs in Mathematics Infinite dimensional holomorphy is the study of holomorphic or analytic functions over complex topological vector spaces. The terms in this description are easily stated and explained and allow the subject to project itself initially, and innocently, as a compact theory with well defined boundaries. However, a comprehensive study would include delving into, and interacting with, not only the obvious topics of topology, several complex variables theory and functional analysis but also, differential geometry, Jordan algebras, Lie groups, operator theory, logic, differential equations and fixed point theory. This diversity leads to a dynamic synthesis of ideas and to an appreciation of a remarkable feature of mathematics - its unity. Unity requires synthesis while synthesis leads to unity. It is necessary to stand back every so often, to take an overall look at one's subject and ask "How has it developed over the last ten, twenty, fifty years? Where is it going? What am I doing?" I was asking these questions during the spring of 1993 as I prepared a short course to be given at Universidade Federal do Rio de Janeiro during the following July. The abundance of suitable material made the selection of topics difficult. For some time I hesitated between two very different aspects of infinite dimensional holomorphy, the geometric-algebraic theory associated with bounded symmetric domains and Jordan triple systems and the topological theory which forms the subject of the present book Mathematics Global analysis (Mathematics) Topology Analysis Mathematik Holomorphe Funktion (DE-588)4025645-5 gnd rswk-swf Topologischer Vektorraum (DE-588)4122383-4 gnd rswk-swf Holomorphe Funktion (DE-588)4025645-5 s Topologischer Vektorraum (DE-588)4122383-4 s DE-604 https://doi.org/10.1007/978-1-4471-0869-6 Verlag Volltext |
spellingShingle | Dineen, Seán 1944- Complex Analysis on Infinite Dimensional Spaces Mathematics Global analysis (Mathematics) Topology Analysis Mathematik Holomorphe Funktion (DE-588)4025645-5 gnd Topologischer Vektorraum (DE-588)4122383-4 gnd |
subject_GND | (DE-588)4025645-5 (DE-588)4122383-4 |
title | Complex Analysis on Infinite Dimensional Spaces |
title_auth | Complex Analysis on Infinite Dimensional Spaces |
title_exact_search | Complex Analysis on Infinite Dimensional Spaces |
title_full | Complex Analysis on Infinite Dimensional Spaces by Seán Dineen |
title_fullStr | Complex Analysis on Infinite Dimensional Spaces by Seán Dineen |
title_full_unstemmed | Complex Analysis on Infinite Dimensional Spaces by Seán Dineen |
title_short | Complex Analysis on Infinite Dimensional Spaces |
title_sort | complex analysis on infinite dimensional spaces |
topic | Mathematics Global analysis (Mathematics) Topology Analysis Mathematik Holomorphe Funktion (DE-588)4025645-5 gnd Topologischer Vektorraum (DE-588)4122383-4 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Topology Analysis Mathematik Holomorphe Funktion Topologischer Vektorraum |
url | https://doi.org/10.1007/978-1-4471-0869-6 |
work_keys_str_mv | AT dineensean complexanalysisoninfinitedimensionalspaces |