An Introduction to Laplace Transforms and Fourier Series:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2001
|
Schriftenreihe: | Springer Undergraduate Mathematics Series
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book has been primarily written for the student of mathematics who is in the second year or the early part of the third year of an undergraduate course. It will also be very useful for students of engineering and the physical sciences for whom Laplace Transforms continue to be an extremely useful tool. The book demands no more than an elementary knowledge of calculus and linear algebra of the type found in many first year mathematics modules for applied subjects. For mathematics majors and specialists, it is not the mathematics that will be challenging but the applications to the real world. The author is in the privileged position of having spent ten or so years outside mathematics in an engineering environment where the Laplace Transform is used in anger to solve real problems, as well as spending rather more years within mathematics where accuracy and logic are of primary importance. This book is written unashamedly from the point of view of the applied mathematician. The Laplace Transform has a rather strange place in mathematics. There is no doubt that it is a topic worthy of study by applied mathematicians who have one eye on the wealth of applications; indeed it is often called Operational Calculus |
Beschreibung: | 1 Online-Ressource (XII, 250p) |
ISBN: | 9781447105053 9781852330156 |
ISSN: | 1615-2085 |
DOI: | 10.1007/978-1-4471-0505-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419359 | ||
003 | DE-604 | ||
005 | 20201116 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781447105053 |c Online |9 978-1-4471-0505-3 | ||
020 | |a 9781852330156 |c Print |9 978-1-85233-015-6 | ||
024 | 7 | |a 10.1007/978-1-4471-0505-3 |2 doi | |
035 | |a (OCoLC)869860010 | ||
035 | |a (DE-599)BVBBV042419359 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Dyke, Phil P. G. |d 1948- |e Verfasser |0 (DE-588)121604276 |4 aut | |
245 | 1 | 0 | |a An Introduction to Laplace Transforms and Fourier Series |c by Philip P. G. Dyke |
264 | 1 | |a London |b Springer London |c 2001 | |
300 | |a 1 Online-Ressource (XII, 250p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Undergraduate Mathematics Series |x 1615-2085 | |
500 | |a This book has been primarily written for the student of mathematics who is in the second year or the early part of the third year of an undergraduate course. It will also be very useful for students of engineering and the physical sciences for whom Laplace Transforms continue to be an extremely useful tool. The book demands no more than an elementary knowledge of calculus and linear algebra of the type found in many first year mathematics modules for applied subjects. For mathematics majors and specialists, it is not the mathematics that will be challenging but the applications to the real world. The author is in the privileged position of having spent ten or so years outside mathematics in an engineering environment where the Laplace Transform is used in anger to solve real problems, as well as spending rather more years within mathematics where accuracy and logic are of primary importance. This book is written unashamedly from the point of view of the applied mathematician. The Laplace Transform has a rather strange place in mathematics. There is no doubt that it is a topic worthy of study by applied mathematicians who have one eye on the wealth of applications; indeed it is often called Operational Calculus | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Analysis | |
650 | 4 | |a Fourier Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Fourier-Reihe |0 (DE-588)4155109-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Laplace-Transformation |0 (DE-588)4034577-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Laplace-Transformation |0 (DE-588)4034577-4 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Fourier-Reihe |0 (DE-588)4155109-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-0505-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854776 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089899364352 |
---|---|
any_adam_object | |
author | Dyke, Phil P. G. 1948- |
author_GND | (DE-588)121604276 |
author_facet | Dyke, Phil P. G. 1948- |
author_role | aut |
author_sort | Dyke, Phil P. G. 1948- |
author_variant | p p g d ppg ppgd |
building | Verbundindex |
bvnumber | BV042419359 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869860010 (DE-599)BVBBV042419359 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4471-0505-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03107nmm a2200529zc 4500</leader><controlfield tag="001">BV042419359</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201116 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447105053</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4471-0505-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781852330156</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-85233-015-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-0505-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869860010</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419359</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dyke, Phil P. G.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121604276</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Introduction to Laplace Transforms and Fourier Series</subfield><subfield code="c">by Philip P. G. Dyke</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 250p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Undergraduate Mathematics Series</subfield><subfield code="x">1615-2085</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book has been primarily written for the student of mathematics who is in the second year or the early part of the third year of an undergraduate course. It will also be very useful for students of engineering and the physical sciences for whom Laplace Transforms continue to be an extremely useful tool. The book demands no more than an elementary knowledge of calculus and linear algebra of the type found in many first year mathematics modules for applied subjects. For mathematics majors and specialists, it is not the mathematics that will be challenging but the applications to the real world. The author is in the privileged position of having spent ten or so years outside mathematics in an engineering environment where the Laplace Transform is used in anger to solve real problems, as well as spending rather more years within mathematics where accuracy and logic are of primary importance. This book is written unashamedly from the point of view of the applied mathematician. The Laplace Transform has a rather strange place in mathematics. There is no doubt that it is a topic worthy of study by applied mathematicians who have one eye on the wealth of applications; indeed it is often called Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Reihe</subfield><subfield code="0">(DE-588)4155109-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laplace-Transformation</subfield><subfield code="0">(DE-588)4034577-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Laplace-Transformation</subfield><subfield code="0">(DE-588)4034577-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Fourier-Reihe</subfield><subfield code="0">(DE-588)4155109-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-0505-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854776</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419359 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781447105053 9781852330156 |
issn | 1615-2085 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854776 |
oclc_num | 869860010 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 250p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer London |
record_format | marc |
series2 | Springer Undergraduate Mathematics Series |
spelling | Dyke, Phil P. G. 1948- Verfasser (DE-588)121604276 aut An Introduction to Laplace Transforms and Fourier Series by Philip P. G. Dyke London Springer London 2001 1 Online-Ressource (XII, 250p) txt rdacontent c rdamedia cr rdacarrier Springer Undergraduate Mathematics Series 1615-2085 This book has been primarily written for the student of mathematics who is in the second year or the early part of the third year of an undergraduate course. It will also be very useful for students of engineering and the physical sciences for whom Laplace Transforms continue to be an extremely useful tool. The book demands no more than an elementary knowledge of calculus and linear algebra of the type found in many first year mathematics modules for applied subjects. For mathematics majors and specialists, it is not the mathematics that will be challenging but the applications to the real world. The author is in the privileged position of having spent ten or so years outside mathematics in an engineering environment where the Laplace Transform is used in anger to solve real problems, as well as spending rather more years within mathematics where accuracy and logic are of primary importance. This book is written unashamedly from the point of view of the applied mathematician. The Laplace Transform has a rather strange place in mathematics. There is no doubt that it is a topic worthy of study by applied mathematicians who have one eye on the wealth of applications; indeed it is often called Operational Calculus Mathematics Global analysis (Mathematics) Fourier analysis Analysis Fourier Analysis Mathematik Fourier-Reihe (DE-588)4155109-6 gnd rswk-swf Laplace-Transformation (DE-588)4034577-4 gnd rswk-swf Laplace-Transformation (DE-588)4034577-4 s 1\p DE-604 Fourier-Reihe (DE-588)4155109-6 s 2\p DE-604 https://doi.org/10.1007/978-1-4471-0505-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Dyke, Phil P. G. 1948- An Introduction to Laplace Transforms and Fourier Series Mathematics Global analysis (Mathematics) Fourier analysis Analysis Fourier Analysis Mathematik Fourier-Reihe (DE-588)4155109-6 gnd Laplace-Transformation (DE-588)4034577-4 gnd |
subject_GND | (DE-588)4155109-6 (DE-588)4034577-4 |
title | An Introduction to Laplace Transforms and Fourier Series |
title_auth | An Introduction to Laplace Transforms and Fourier Series |
title_exact_search | An Introduction to Laplace Transforms and Fourier Series |
title_full | An Introduction to Laplace Transforms and Fourier Series by Philip P. G. Dyke |
title_fullStr | An Introduction to Laplace Transforms and Fourier Series by Philip P. G. Dyke |
title_full_unstemmed | An Introduction to Laplace Transforms and Fourier Series by Philip P. G. Dyke |
title_short | An Introduction to Laplace Transforms and Fourier Series |
title_sort | an introduction to laplace transforms and fourier series |
topic | Mathematics Global analysis (Mathematics) Fourier analysis Analysis Fourier Analysis Mathematik Fourier-Reihe (DE-588)4155109-6 gnd Laplace-Transformation (DE-588)4034577-4 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Fourier analysis Analysis Fourier Analysis Mathematik Fourier-Reihe Laplace-Transformation |
url | https://doi.org/10.1007/978-1-4471-0505-3 |
work_keys_str_mv | AT dykephilpg anintroductiontolaplacetransformsandfourierseries |