Introduction to Ring Theory:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2000
|
Schriftenreihe: | Springer Undergraduate Mathematics Series
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Most parts of algebra have undergone great changes and advances in recent years, perhaps none more so than ring theory. In this volume, Paul Cohn provides a clear and structured introduction to the subject. After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product. Tensor product and rings of fractions, followed by a description of free rings. The reader is assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions |
Beschreibung: | 1 Online-Ressource (X, 229p) |
ISBN: | 9781447104759 9781852332068 |
ISSN: | 1615-2085 |
DOI: | 10.1007/978-1-4471-0475-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419358 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9781447104759 |c Online |9 978-1-4471-0475-9 | ||
020 | |a 9781852332068 |c Print |9 978-1-85233-206-8 | ||
024 | 7 | |a 10.1007/978-1-4471-0475-9 |2 doi | |
035 | |a (OCoLC)869854767 | ||
035 | |a (DE-599)BVBBV042419358 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Cohn, P. M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to Ring Theory |c by P. M. Cohn |
264 | 1 | |a London |b Springer London |c 2000 | |
300 | |a 1 Online-Ressource (X, 229p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Undergraduate Mathematics Series |x 1615-2085 | |
500 | |a Most parts of algebra have undergone great changes and advances in recent years, perhaps none more so than ring theory. In this volume, Paul Cohn provides a clear and structured introduction to the subject. After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product. Tensor product and rings of fractions, followed by a description of free rings. The reader is assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebra | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Ringtheorie |0 (DE-588)4126571-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ringtheorie |0 (DE-588)4126571-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-0475-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854775 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089900412928 |
---|---|
any_adam_object | |
author | Cohn, P. M. |
author_facet | Cohn, P. M. |
author_role | aut |
author_sort | Cohn, P. M. |
author_variant | p m c pm pmc |
building | Verbundindex |
bvnumber | BV042419358 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869854767 (DE-599)BVBBV042419358 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4471-0475-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02093nmm a2200445zc 4500</leader><controlfield tag="001">BV042419358</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447104759</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4471-0475-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781852332068</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-85233-206-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-0475-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869854767</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419358</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cohn, P. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Ring Theory</subfield><subfield code="c">by P. M. Cohn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 229p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Undergraduate Mathematics Series</subfield><subfield code="x">1615-2085</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Most parts of algebra have undergone great changes and advances in recent years, perhaps none more so than ring theory. In this volume, Paul Cohn provides a clear and structured introduction to the subject. After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product. Tensor product and rings of fractions, followed by a description of free rings. The reader is assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-0475-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854775</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419358 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781447104759 9781852332068 |
issn | 1615-2085 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854775 |
oclc_num | 869854767 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 229p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer London |
record_format | marc |
series2 | Springer Undergraduate Mathematics Series |
spelling | Cohn, P. M. Verfasser aut Introduction to Ring Theory by P. M. Cohn London Springer London 2000 1 Online-Ressource (X, 229p) txt rdacontent c rdamedia cr rdacarrier Springer Undergraduate Mathematics Series 1615-2085 Most parts of algebra have undergone great changes and advances in recent years, perhaps none more so than ring theory. In this volume, Paul Cohn provides a clear and structured introduction to the subject. After a chapter on the definition of rings and modules there are brief accounts of Artinian rings, commutative Noetherian rings and ring constructions, such as the direct product. Tensor product and rings of fractions, followed by a description of free rings. The reader is assumed to have a basic understanding of set theory, group theory and vector spaces. Over two hundred carefully selected exercises are included, most with outline solutions Mathematics Algebra Mathematik Ringtheorie (DE-588)4126571-3 gnd rswk-swf Ringtheorie (DE-588)4126571-3 s 1\p DE-604 https://doi.org/10.1007/978-1-4471-0475-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cohn, P. M. Introduction to Ring Theory Mathematics Algebra Mathematik Ringtheorie (DE-588)4126571-3 gnd |
subject_GND | (DE-588)4126571-3 |
title | Introduction to Ring Theory |
title_auth | Introduction to Ring Theory |
title_exact_search | Introduction to Ring Theory |
title_full | Introduction to Ring Theory by P. M. Cohn |
title_fullStr | Introduction to Ring Theory by P. M. Cohn |
title_full_unstemmed | Introduction to Ring Theory by P. M. Cohn |
title_short | Introduction to Ring Theory |
title_sort | introduction to ring theory |
topic | Mathematics Algebra Mathematik Ringtheorie (DE-588)4126571-3 gnd |
topic_facet | Mathematics Algebra Mathematik Ringtheorie |
url | https://doi.org/10.1007/978-1-4471-0475-9 |
work_keys_str_mv | AT cohnpm introductiontoringtheory |