Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2001
|
Schriftenreihe: | Springer Undergraduate Mathematics Series
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Geometry is probably the most accessible branch of mathematics, and can provide an easy route to understanding some of the more complex ideas that mathematics can present. This book is intended to introduce readers to the major geometrical topics taught at undergraduate level, in a manner that is both accessible and rigorous. The author uses world measurement as a synonym for geometry - hence the importance of numbers, coordinates and their manipulation - and has included over 300 exercises, with answers to most of them. The text includes such topics as: - Coordinates - Euclidean plane geometry - Complex numbers - Solid geometry - Conics and quadratic surfaces - Spherical geometry - Quaternions It is suitable for all undergraduate geometry courses, but it is also a useful resource for advanced sixth formers, research mathematicians, and those taking courses in physics, introductory astronomy and other science subjects |
Beschreibung: | 1 Online-Ressource (XII, 313 p) |
ISBN: | 9781447103257 9781852330583 |
ISSN: | 1615-2085 |
DOI: | 10.1007/978-1-4471-0325-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419350 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9781447103257 |c Online |9 978-1-4471-0325-7 | ||
020 | |a 9781852330583 |c Print |9 978-1-85233-058-3 | ||
024 | 7 | |a 10.1007/978-1-4471-0325-7 |2 doi | |
035 | |a (OCoLC)1165554241 | ||
035 | |a (DE-599)BVBBV042419350 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Fenn, Roger |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry |c by Roger Fenn |
264 | 1 | |a London |b Springer London |c 2001 | |
300 | |a 1 Online-Ressource (XII, 313 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Undergraduate Mathematics Series |x 1615-2085 | |
500 | |a Geometry is probably the most accessible branch of mathematics, and can provide an easy route to understanding some of the more complex ideas that mathematics can present. This book is intended to introduce readers to the major geometrical topics taught at undergraduate level, in a manner that is both accessible and rigorous. The author uses world measurement as a synonym for geometry - hence the importance of numbers, coordinates and their manipulation - and has included over 300 exercises, with answers to most of them. The text includes such topics as: - Coordinates - Euclidean plane geometry - Complex numbers - Solid geometry - Conics and quadratic surfaces - Spherical geometry - Quaternions It is suitable for all undergraduate geometry courses, but it is also a useful resource for advanced sixth formers, research mathematicians, and those taking courses in physics, introductory astronomy and other science subjects | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-0325-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854767 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089878392832 |
---|---|
any_adam_object | |
author | Fenn, Roger |
author_facet | Fenn, Roger |
author_role | aut |
author_sort | Fenn, Roger |
author_variant | r f rf |
building | Verbundindex |
bvnumber | BV042419350 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165554241 (DE-599)BVBBV042419350 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4471-0325-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02353nmm a2200445zc 4500</leader><controlfield tag="001">BV042419350</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447103257</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4471-0325-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781852330583</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-85233-058-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-0325-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165554241</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419350</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fenn, Roger</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry</subfield><subfield code="c">by Roger Fenn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 313 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Undergraduate Mathematics Series</subfield><subfield code="x">1615-2085</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Geometry is probably the most accessible branch of mathematics, and can provide an easy route to understanding some of the more complex ideas that mathematics can present. This book is intended to introduce readers to the major geometrical topics taught at undergraduate level, in a manner that is both accessible and rigorous. The author uses world measurement as a synonym for geometry - hence the importance of numbers, coordinates and their manipulation - and has included over 300 exercises, with answers to most of them. The text includes such topics as: - Coordinates - Euclidean plane geometry - Complex numbers - Solid geometry - Conics and quadratic surfaces - Spherical geometry - Quaternions It is suitable for all undergraduate geometry courses, but it is also a useful resource for advanced sixth formers, research mathematicians, and those taking courses in physics, introductory astronomy and other science subjects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-0325-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854767</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419350 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781447103257 9781852330583 |
issn | 1615-2085 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854767 |
oclc_num | 1165554241 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 313 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Springer London |
record_format | marc |
series2 | Springer Undergraduate Mathematics Series |
spelling | Fenn, Roger Verfasser aut Geometry by Roger Fenn London Springer London 2001 1 Online-Ressource (XII, 313 p) txt rdacontent c rdamedia cr rdacarrier Springer Undergraduate Mathematics Series 1615-2085 Geometry is probably the most accessible branch of mathematics, and can provide an easy route to understanding some of the more complex ideas that mathematics can present. This book is intended to introduce readers to the major geometrical topics taught at undergraduate level, in a manner that is both accessible and rigorous. The author uses world measurement as a synonym for geometry - hence the importance of numbers, coordinates and their manipulation - and has included over 300 exercises, with answers to most of them. The text includes such topics as: - Coordinates - Euclidean plane geometry - Complex numbers - Solid geometry - Conics and quadratic surfaces - Spherical geometry - Quaternions It is suitable for all undergraduate geometry courses, but it is also a useful resource for advanced sixth formers, research mathematicians, and those taking courses in physics, introductory astronomy and other science subjects Mathematics Geometry Mathematik Geometrie (DE-588)4020236-7 gnd rswk-swf Geometrie (DE-588)4020236-7 s 1\p DE-604 https://doi.org/10.1007/978-1-4471-0325-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fenn, Roger Geometry Mathematics Geometry Mathematik Geometrie (DE-588)4020236-7 gnd |
subject_GND | (DE-588)4020236-7 |
title | Geometry |
title_auth | Geometry |
title_exact_search | Geometry |
title_full | Geometry by Roger Fenn |
title_fullStr | Geometry by Roger Fenn |
title_full_unstemmed | Geometry by Roger Fenn |
title_short | Geometry |
title_sort | geometry |
topic | Mathematics Geometry Mathematik Geometrie (DE-588)4020236-7 gnd |
topic_facet | Mathematics Geometry Mathematik Geometrie |
url | https://doi.org/10.1007/978-1-4471-0325-7 |
work_keys_str_mv | AT fennroger geometry |