James Stirling’s Methodus Differentialis: An Annotated Translation of Stirling’s Text
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Springer London
2003
|
Schriftenreihe: | Sources and Studies in the History of Mathematics and Physical Sciences
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | James Stirling's "Methodus Differentialis" is one of the early classics of numerical analysis. It contains not only the results and ideas for which Stirling is chiefly remembered, for example, Stirling numbers and Stirling's asymptotic formula for factorials, but also a wealth of material on transformations of series and limiting processes. An impressive collection of examples illustrates the efficacy of Stirling's methods by means of numerical calculations, and some germs of later ideas, notably the Gamma function and asymptotic series, are also to be found. This volume presents a new translation of Stirling's text that features an extensive series of notes in which Stirling's results and calculations are analysed and historical background is provided. Ian Tweddle places the text in its contemporary context, but also relates the material to the interests of practising mathematicians today. Clear and accessible, this book will be of interest to mathematical historians, researchers and numerical analysts |
Beschreibung: | 1 Online-Ressource (VIII, 296 p) |
ISBN: | 9781447100218 9781447111276 |
DOI: | 10.1007/978-1-4471-0021-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042419334 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9781447100218 |c Online |9 978-1-4471-0021-8 | ||
020 | |a 9781447111276 |c Print |9 978-1-4471-1127-6 | ||
024 | 7 | |a 10.1007/978-1-4471-0021-8 |2 doi | |
035 | |a (OCoLC)869866133 | ||
035 | |a (DE-599)BVBBV042419334 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510.9 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Tweddle, Ian |e Verfasser |4 aut | |
245 | 1 | 0 | |a James Stirling’s Methodus Differentialis |b An Annotated Translation of Stirling’s Text |c by Ian Tweddle |
264 | 1 | |a London |b Springer London |c 2003 | |
300 | |a 1 Online-Ressource (VIII, 296 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Sources and Studies in the History of Mathematics and Physical Sciences | |
500 | |a James Stirling's "Methodus Differentialis" is one of the early classics of numerical analysis. It contains not only the results and ideas for which Stirling is chiefly remembered, for example, Stirling numbers and Stirling's asymptotic formula for factorials, but also a wealth of material on transformations of series and limiting processes. An impressive collection of examples illustrates the efficacy of Stirling's methods by means of numerical calculations, and some germs of later ideas, notably the Gamma function and asymptotic series, are also to be found. This volume presents a new translation of Stirling's text that features an extensive series of notes in which Stirling's results and calculations are analysed and historical background is provided. Ian Tweddle places the text in its contemporary context, but also relates the material to the interests of practising mathematicians today. Clear and accessible, this book will be of interest to mathematical historians, researchers and numerical analysts | ||
648 | 7 | |a Geschichte 1730 |2 gnd |9 rswk-swf | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a History of Mathematical Sciences | |
650 | 4 | |a Analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Quelle |0 (DE-588)4135952-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | 1 | |a Geschichte 1730 |A z |
689 | 0 | 2 | |a Quelle |0 (DE-588)4135952-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4471-0021-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854751 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089832255488 |
---|---|
any_adam_object | |
author | Tweddle, Ian |
author_facet | Tweddle, Ian |
author_role | aut |
author_sort | Tweddle, Ian |
author_variant | i t it |
building | Verbundindex |
bvnumber | BV042419334 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869866133 (DE-599)BVBBV042419334 |
dewey-full | 510.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510.9 |
dewey-search | 510.9 |
dewey-sort | 3510.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4471-0021-8 |
era | Geschichte 1730 gnd |
era_facet | Geschichte 1730 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02917nmm a2200541zc 4500</leader><controlfield tag="001">BV042419334</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447100218</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4471-0021-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781447111276</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4471-1127-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4471-0021-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869866133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419334</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tweddle, Ian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">James Stirling’s Methodus Differentialis</subfield><subfield code="b">An Annotated Translation of Stirling’s Text</subfield><subfield code="c">by Ian Tweddle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Springer London</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 296 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Sources and Studies in the History of Mathematics and Physical Sciences</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">James Stirling's "Methodus Differentialis" is one of the early classics of numerical analysis. It contains not only the results and ideas for which Stirling is chiefly remembered, for example, Stirling numbers and Stirling's asymptotic formula for factorials, but also a wealth of material on transformations of series and limiting processes. An impressive collection of examples illustrates the efficacy of Stirling's methods by means of numerical calculations, and some germs of later ideas, notably the Gamma function and asymptotic series, are also to be found. This volume presents a new translation of Stirling's text that features an extensive series of notes in which Stirling's results and calculations are analysed and historical background is provided. Ian Tweddle places the text in its contemporary context, but also relates the material to the interests of practising mathematicians today. Clear and accessible, this book will be of interest to mathematical historians, researchers and numerical analysts</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1730</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History of Mathematical Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quelle</subfield><subfield code="0">(DE-588)4135952-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte 1730</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Quelle</subfield><subfield code="0">(DE-588)4135952-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4471-0021-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854751</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419334 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781447100218 9781447111276 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854751 |
oclc_num | 869866133 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 296 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer London |
record_format | marc |
series2 | Sources and Studies in the History of Mathematics and Physical Sciences |
spelling | Tweddle, Ian Verfasser aut James Stirling’s Methodus Differentialis An Annotated Translation of Stirling’s Text by Ian Tweddle London Springer London 2003 1 Online-Ressource (VIII, 296 p) txt rdacontent c rdamedia cr rdacarrier Sources and Studies in the History of Mathematics and Physical Sciences James Stirling's "Methodus Differentialis" is one of the early classics of numerical analysis. It contains not only the results and ideas for which Stirling is chiefly remembered, for example, Stirling numbers and Stirling's asymptotic formula for factorials, but also a wealth of material on transformations of series and limiting processes. An impressive collection of examples illustrates the efficacy of Stirling's methods by means of numerical calculations, and some germs of later ideas, notably the Gamma function and asymptotic series, are also to be found. This volume presents a new translation of Stirling's text that features an extensive series of notes in which Stirling's results and calculations are analysed and historical background is provided. Ian Tweddle places the text in its contemporary context, but also relates the material to the interests of practising mathematicians today. Clear and accessible, this book will be of interest to mathematical historians, researchers and numerical analysts Geschichte 1730 gnd rswk-swf Mathematics Global analysis (Mathematics) Numerical analysis History of Mathematical Sciences Analysis Numerical Analysis Mathematik Quelle (DE-588)4135952-5 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 s Geschichte 1730 z Quelle (DE-588)4135952-5 s 1\p DE-604 https://doi.org/10.1007/978-1-4471-0021-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tweddle, Ian James Stirling’s Methodus Differentialis An Annotated Translation of Stirling’s Text Mathematics Global analysis (Mathematics) Numerical analysis History of Mathematical Sciences Analysis Numerical Analysis Mathematik Quelle (DE-588)4135952-5 gnd Numerische Mathematik (DE-588)4042805-9 gnd |
subject_GND | (DE-588)4135952-5 (DE-588)4042805-9 |
title | James Stirling’s Methodus Differentialis An Annotated Translation of Stirling’s Text |
title_auth | James Stirling’s Methodus Differentialis An Annotated Translation of Stirling’s Text |
title_exact_search | James Stirling’s Methodus Differentialis An Annotated Translation of Stirling’s Text |
title_full | James Stirling’s Methodus Differentialis An Annotated Translation of Stirling’s Text by Ian Tweddle |
title_fullStr | James Stirling’s Methodus Differentialis An Annotated Translation of Stirling’s Text by Ian Tweddle |
title_full_unstemmed | James Stirling’s Methodus Differentialis An Annotated Translation of Stirling’s Text by Ian Tweddle |
title_short | James Stirling’s Methodus Differentialis |
title_sort | james stirling s methodus differentialis an annotated translation of stirling s text |
title_sub | An Annotated Translation of Stirling’s Text |
topic | Mathematics Global analysis (Mathematics) Numerical analysis History of Mathematical Sciences Analysis Numerical Analysis Mathematik Quelle (DE-588)4135952-5 gnd Numerische Mathematik (DE-588)4042805-9 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Numerical analysis History of Mathematical Sciences Analysis Numerical Analysis Mathematik Quelle Numerische Mathematik |
url | https://doi.org/10.1007/978-1-4471-0021-8 |
work_keys_str_mv | AT tweddleian jamesstirlingsmethodusdifferentialisanannotatedtranslationofstirlingstext |