Projectors and Projection Methods:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boston, MA
Springer US
2004
|
Schriftenreihe: | Advances in Mathematics
6 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The projectors are considered as simple but important type of matrices and operators. Their basic theory can be found in many books, among which Hal mas [177], [178] are of particular significance. The projectors or projections became an active research area in the last two decades due to ideas generated from linear algebra, statistics and various areas of algorithmic mathematics. There has also grown up a great and increasing number of projection meth ods for different purposes. The aim of this book is to give a unified survey on projectors and projection methods including the most recent results. The words projector, projection and idempotent are used as synonyms, although the word projection is more common. We assume that the reader is familiar with linear algebra and mathemati cal analysis at a bachelor level. The first chapter includes supplements from linear algebra and matrix analysis that are not incorporated in the standard courses. The second and the last chapter include the theory of projectors. Four chapters are devoted to projection methods for solving linear and non linear systems of algebraic equations and convex optimization problems |
Beschreibung: | 1 Online-Ressource (X, 288 p) |
ISBN: | 9781441991805 9781461348252 |
DOI: | 10.1007/978-1-4419-9180-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042419328 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9781441991805 |c Online |9 978-1-4419-9180-5 | ||
020 | |a 9781461348252 |c Print |9 978-1-4613-4825-2 | ||
024 | 7 | |a 10.1007/978-1-4419-9180-5 |2 doi | |
035 | |a (OCoLC)867181515 | ||
035 | |a (DE-599)BVBBV042419328 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.5 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Galántai, Aurél |e Verfasser |4 aut | |
245 | 1 | 0 | |a Projectors and Projection Methods |c by Aurél Galántai |
264 | 1 | |a Boston, MA |b Springer US |c 2004 | |
300 | |a 1 Online-Ressource (X, 288 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in Mathematics |v 6 | |
500 | |a The projectors are considered as simple but important type of matrices and operators. Their basic theory can be found in many books, among which Hal mas [177], [178] are of particular significance. The projectors or projections became an active research area in the last two decades due to ideas generated from linear algebra, statistics and various areas of algorithmic mathematics. There has also grown up a great and increasing number of projection meth ods for different purposes. The aim of this book is to give a unified survey on projectors and projection methods including the most recent results. The words projector, projection and idempotent are used as synonyms, although the word projection is more common. We assume that the reader is familiar with linear algebra and mathemati cal analysis at a bachelor level. The first chapter includes supplements from linear algebra and matrix analysis that are not incorporated in the standard courses. The second and the last chapter include the theory of projectors. Four chapters are devoted to projection methods for solving linear and non linear systems of algebraic equations and convex optimization problems | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Electronic data processing | |
650 | 4 | |a Matrix theory | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Algorithms | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Linear and Multilinear Algebras, Matrix Theory | |
650 | 4 | |a Numeric Computing | |
650 | 4 | |a Optimization | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Projektion |g Mathematik |0 (DE-588)4175877-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Projektion |g Mathematik |0 (DE-588)4175877-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4419-9180-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027854745 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153089827012608 |
---|---|
any_adam_object | |
author | Galántai, Aurél |
author_facet | Galántai, Aurél |
author_role | aut |
author_sort | Galántai, Aurél |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV042419328 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)867181515 (DE-599)BVBBV042419328 |
dewey-full | 512.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.5 |
dewey-search | 512.5 |
dewey-sort | 3512.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-1-4419-9180-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02982nmm a2200553zcb4500</leader><controlfield tag="001">BV042419328</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781441991805</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4419-9180-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781461348252</subfield><subfield code="c">Print</subfield><subfield code="9">978-1-4613-4825-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4419-9180-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)867181515</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042419328</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Galántai, Aurél</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Projectors and Projection Methods</subfield><subfield code="c">by Aurél Galántai</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston, MA</subfield><subfield code="b">Springer US</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 288 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in Mathematics</subfield><subfield code="v">6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The projectors are considered as simple but important type of matrices and operators. Their basic theory can be found in many books, among which Hal mas [177], [178] are of particular significance. The projectors or projections became an active research area in the last two decades due to ideas generated from linear algebra, statistics and various areas of algorithmic mathematics. There has also grown up a great and increasing number of projection meth ods for different purposes. The aim of this book is to give a unified survey on projectors and projection methods including the most recent results. The words projector, projection and idempotent are used as synonyms, although the word projection is more common. We assume that the reader is familiar with linear algebra and mathemati cal analysis at a bachelor level. The first chapter includes supplements from linear algebra and matrix analysis that are not incorporated in the standard courses. The second and the last chapter include the theory of projectors. Four chapters are devoted to projection methods for solving linear and non linear systems of algebraic equations and convex optimization problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear and Multilinear Algebras, Matrix Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numeric Computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Projektion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4175877-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Projektion</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4175877-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4419-9180-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027854745</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042419328 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:04Z |
institution | BVB |
isbn | 9781441991805 9781461348252 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027854745 |
oclc_num | 867181515 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 288 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer US |
record_format | marc |
series2 | Advances in Mathematics |
spelling | Galántai, Aurél Verfasser aut Projectors and Projection Methods by Aurél Galántai Boston, MA Springer US 2004 1 Online-Ressource (X, 288 p) txt rdacontent c rdamedia cr rdacarrier Advances in Mathematics 6 The projectors are considered as simple but important type of matrices and operators. Their basic theory can be found in many books, among which Hal mas [177], [178] are of particular significance. The projectors or projections became an active research area in the last two decades due to ideas generated from linear algebra, statistics and various areas of algorithmic mathematics. There has also grown up a great and increasing number of projection meth ods for different purposes. The aim of this book is to give a unified survey on projectors and projection methods including the most recent results. The words projector, projection and idempotent are used as synonyms, although the word projection is more common. We assume that the reader is familiar with linear algebra and mathemati cal analysis at a bachelor level. The first chapter includes supplements from linear algebra and matrix analysis that are not incorporated in the standard courses. The second and the last chapter include the theory of projectors. Four chapters are devoted to projection methods for solving linear and non linear systems of algebraic equations and convex optimization problems Mathematics Electronic data processing Matrix theory Functional analysis Algorithms Mathematical optimization Linear and Multilinear Algebras, Matrix Theory Numeric Computing Optimization Functional Analysis Datenverarbeitung Mathematik Projektion Mathematik (DE-588)4175877-8 gnd rswk-swf Projektion Mathematik (DE-588)4175877-8 s 1\p DE-604 https://doi.org/10.1007/978-1-4419-9180-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Galántai, Aurél Projectors and Projection Methods Mathematics Electronic data processing Matrix theory Functional analysis Algorithms Mathematical optimization Linear and Multilinear Algebras, Matrix Theory Numeric Computing Optimization Functional Analysis Datenverarbeitung Mathematik Projektion Mathematik (DE-588)4175877-8 gnd |
subject_GND | (DE-588)4175877-8 |
title | Projectors and Projection Methods |
title_auth | Projectors and Projection Methods |
title_exact_search | Projectors and Projection Methods |
title_full | Projectors and Projection Methods by Aurél Galántai |
title_fullStr | Projectors and Projection Methods by Aurél Galántai |
title_full_unstemmed | Projectors and Projection Methods by Aurél Galántai |
title_short | Projectors and Projection Methods |
title_sort | projectors and projection methods |
topic | Mathematics Electronic data processing Matrix theory Functional analysis Algorithms Mathematical optimization Linear and Multilinear Algebras, Matrix Theory Numeric Computing Optimization Functional Analysis Datenverarbeitung Mathematik Projektion Mathematik (DE-588)4175877-8 gnd |
topic_facet | Mathematics Electronic data processing Matrix theory Functional analysis Algorithms Mathematical optimization Linear and Multilinear Algebras, Matrix Theory Numeric Computing Optimization Functional Analysis Datenverarbeitung Mathematik Projektion Mathematik |
url | https://doi.org/10.1007/978-1-4419-9180-5 |
work_keys_str_mv | AT galantaiaurel projectorsandprojectionmethods |